resources & energy

LANDCOM

North Tuncurry (NSW) Residential Land Development

Soil Contamination Investigation

301020-02358 - 00-EN-REP-0001

28 April 2010

Infrastructure & Environment

Level 12, 333 Collins Street Melbourne VIC 3000 Australia Telephone: +61 3 8676 3500 Facsimile: +61 3 8676 3505

Facsimile: +61 3 8676 3505 www.worleyparsons.com ABN 61 001 279 812

© Copyright 2010 WorleyParsons

Worley Parsons

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

Disclaimer

This report has been prepared on behalf of and for the exclusive use of LANDCOM, and is subject to and issued in accordance with the agreement between LANDCOM and WorleyParsons. WorleyParsons accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party.

Copying this report without the permission of LANDCOM or WorleyParsons is not permitted.

			PARSONS APPROVAL		APPROVAL	
Issued for internal review	J Lee	C Barker	N/A	23/04/2010	N/A	
Issued to client	Trligh	C Barker	L Missen	28/04/2010	,	
			<u> </u>			
		Issued to client Aguin	J Lee C Barker Issued to client	J Lee C Barker N/A Issued to client Mylign Column	J Lée C Barker N/A Issued to client Aprilips Columnia	J Lee C Barker N/A Issued to client Aprilip Lagran

WorleyParsons

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

CONTENTS

1		INTRO	DUCTION	1
	1.1	Backgr	ound	1
	1.2	Objecti	ves	1
	1.3	Scope	of Works	1
2		SITE I	NFORMATION	3
	2.1	Site De	escription and Key Features	3
	2.2	Topogi	aphy	4
	2.3	Geolog	jy	4
	2.4	Vegeta	ition	4
3		REVIE	W OF PREVIOUS ENVIRONMENTAL REPORTS	5
4		INVES	TIGATION METHODOLOGY	7
	4.1	Fieldwo	ork	7
	4.2	Labora	tory Testing	8
	4.3	Quality	Assurance / Quality Control – Analytical Data	8
	4.4	Health	and Safety Protocols	9
5		REGUI	LATORY FRAMEWORK AND APPLICABLE GUIDELINES	10
6		ASSES	SSMENT OF SOIL CONTAMINATION	12
	6.1	Site Sp	pecific Geological Conditions	12
	6.2	Soil An	alytical Results	13
		6.2.1	Protection of Highly Modified Ecosystems	13
		6.2.2	Protection of Human Health	13
		6.2.3	Aesthetics	14
	6.3	Discus	sion on pH and Potential for Acid Sulfate Soils	14
		6.3.1	Soil pH Consideration	14
		6.3.2	Potential for Acid Sulfate Soils	14
7		CONC	LUSIONS AND RECOMMENDATIONS	16

301020-02358 : 00-EN-REP-0001 Rev A : 28 April 2010

Worley Parsons

EcoNomics

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT **SOIL CONTAMINATION INVESTIGATION**

8	REFER	RENCES	.18
9	LIMITA	TIONS	.19
APPENI	OIX 1	FIGURES	
APPEND	IX 2	SOIL BOREHOLE LOGS	
APPEND	IX 3	TABULATED SOIL RESULTS & ANALYTICAL LABORATORY REPORTS	
APPEND	IX 4	SITE PHOTOGRAPHS (13 AND 14 JANUARY 2010)	

Page iv

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

1 INTRODUCTION

1.1 Background

WorleyParsons was engaged by Landcom to conduct a Soil Contamination Investigation (SCI) at the North Tuncurry site on the New South Wales (NSW) Mid-North Coast (the site). The shaded area shown in **Figure 1** outlines the location of the site within the vicinity of North Tuncurry.

The Department of Lands and Landcom have entered into a Project Delivery Agreement (PDA) for the development of the site. The agreement authorises the implementation of site investigations for due-diligence purposes, to determine the feasibility of the site for residential development. Detailed investigations are required to determine the extent and nature of site constraints to allow planning of future development options. The site is nominated as a future urban release area in the Mid-North Coast Regional Strategy 2006-31. This SCI forms a small and contributing component of the detailed investigations required as part of the planning stages.

1.2 Objectives

The objectives of this SCI were to:

- Identify potential land contamination issues that may impact on the proposed development of the site; and
- Conduct a preliminary assessment of the risk to human health, the environment, and the future use of the site, in the context of potential land contamination.

1.3 Scope of Works

The agreed scope of this SCI was undertaken by WorleyParsons and did not include groundwater investigations and was limited to soil sampling and analysis.

The final scope of works essentially included:

- Review of site physical characteristics and available historical information, including previous environmental reports, and regional topography and geology;
- Compilation of an Occupational, Health and Safety plan for mobilisation to/from and within the site, and soil sampling at the site;
- Location of underground services using a Dial Before You Dig enquiry;
- Hand-augering, logging and sampling of 16 soil borehole locations (refer to Figure 2);
- Chemical analysis of selected soil samples collected from fieldworks for identified potential contaminants of concern;

k:\fraser\geotechnical\projects\301020-02358 north tuncurry residential land development\10_engineer\10-13_en-environment\working documents\301020-02358-00-en-rep-00001 draft.doc

Page 1 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

- Comparison of soil chemical concentrations with relevant 'tier-one' screening level guidelines
 as part of a preliminary assessment of risk that the future site development may pose to:
 human health, the environment and future site use including buildings; and
- Preparation of this report.

Page 2 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

2 SITE INFORMATION

The following information was obtained from field observation and the following sources:

- Scanned 1:250,000 Newcastle (Sheet S1 56-2) Geological map viewed from the Geoscience Australia Government website www.ga.gov.au (ref. 14);
- J. Roberts, B. Engel and J. Chapman (June 1988) *Geology of the Camberwell, Dungog and Bulahdelah 1:100,000 Sheets*, Geological Survey of New South Wales Department of Mineral Resources (1988) (ref. 15); and
- WorleyParsons SCI field work conducted between 13 and 14 January 2010.

2.1 Site Description and Key Features

The North Tuncurry site is situated on the NSW Mid-North Coast, approximately 160 km north of Newcastle and 320 km from the Sydney Central Business District (CBD). The site is in the Local Government Area of Great Lakes Council, and is contained within several Crown Land allotments. The Forster Tuncurry Golf Course and Country Club (the golf course) is located within the vicinity of the site and does not form part of this SCI.

The site comprises an irregular, approximately rectangular area of land, occupying approximately 430 ha. The site is bounded by the Nine Mile Beach coastline to the east, The Lakes Way and residential and rural grazing to the west, developed land including residential and an educational facility to the south, and Crown Lands and a landfill (and waste processing facility) to the north (refer to **Figure 2** attached in **Appendix 1**). A cleared electricity easement runs parallel to The Lakes Way adjacent to the western boundary of the site.

At the time of the WorleyParsons 13 and 14 January 2010 field visit, illegally dumped waste materials including: domestic waste, construction and demolition waste, pieces of scrap metal and abandoned cars were observed across the site.

The golf course is located within the southern portion of the site with access from The Lakes Way. The access road to the golf course partially runs along a former airfield runway, located on the southern end of the site. However no significant evidence of any former infrastructure relating to the airfield was evident, except for a 'crushed rock' surface area located adjacent to the start of the golf course access road, which was stockpiled with imported fill material and gravel (understood to be used in the construction of the access road way). At the time of our field work, council workers were undertaking truck maintenance work at the area and engine oil was observed to have been released to the ground from this work (refer to Photograph 5 in **Appendix 4**).

Page 3 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

2.2 Topography

The closest surface water bodies are the Wallamba River and Millers Mistake Creek situated approximately between 0.5 and 1.0 km to the west of the site, the Nine Mile Beach (Pacific Ocean) located approximately 300 m to the east, and Wallis Lake situated approximately 1.0 km to the south. The majority of the site is characterised by low lying remnant sand dunes in the west, through to more defined, undulating dunes in the east. The dunes are arranged roughly parallel to the coastline.

2.3 Geology

The 1:250,000 Geological series (Sheet S1 56-2) Newcastle Map Sheet (ref. 14), indicates that the site is underlain by Quaternary age: gravel, sand, silt, clay, ("Waterloo Rock" marine and fresh water deposits). Underlying the sediments are the Devonian age: mudstone, sandstone, conglomerate, greywacke, tuff and chert, including the "Barraba Mudstone", "Baldwin Formation" and "Barraba Series".

Review of the Geological Survey of New South Wales Department of Mineral Resources (DMR) (1988) report (ref. 15) also indicated that the site is located within the Bulahdelah 1:100,000 Geological Sheet, where surrounding areas are known to contain significant mined/quarried deposits and resources of various industrial minerals and rock.

2.4 Vegetation

With the exception of a number of unsealed access tracks that transect the site in a grid-like pattern, the site is vacant and is mostly vegetated. The site is dominated by coastal heath, with scattered occurrences of Blackbutt forest and Blackbutt bloodwood associations. Remnant stands of non-native pine trees were observed in various locations across the site related to former plantation timber activities. In addition, minor evidence of former plantation activities was noted (the disturbance of large areas of the site and remnant stands of pine trees were observed).

Page 4 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

3 REVIEW OF PREVIOUS ENVIRONMENTAL REPORTS

A review of available previous environmental assessment reports for the site was conducted. Two reports are known to have been undertaken. These include:

- a) Phase 1 Environmental Site Assessment Landcom, North Tuncurry, NSW (Draft Report) (January 2006), Environmental Resources Management (ERM) Australia (ref. 12); and
- b) Preliminary Phase 2 Environmental Site Assessment North Tuncurry, NSW (Draft) (June 2006), ERM Australia (ref. 13).

Relevant information relating to the site provided within the reports listed has been summarised below.

Phase 1 Environmental Site Assessment – Landcom, North Tuncurry, NSW (Draft Report) (January 2006), ERM Australia

The objectives of this Phase 1 Assessment were to assess the likelihood of environmental contamination arising from past and present land uses at the site. The scope involved: Site History Review of relevant previous investigation reports, published information database/maps and aerial photographs, and a site inspection. Findings relating specifically to the site were:

- The review of the 1971 aerial photograph noted the presence of the airfield runway in the southern portion of the site. However the review of the coloured aerial photograph revealed that the airfield runaway was no longer in full time use in 1991.
- Strip sand mining and a dam likely related to the mining activities was evident to the north of
 the site as per the review of the 1971 aerial photograph. It is understood that more access
 tracks related to the minerals exploration drilling activities, have been cut across the site as
 the years progressed. The review of the 1991 aerial photograph indicated that the sand
 mining activities may have ceased, and instead the adjacent area is developed into a landfill
 and waste sorting facility.
- Potential presence of residual contamination associated with former pine plantation from the
 use of herbicides and pesticides over the whole site was evident. It was suggested by ERM
 that based on the time gap since the plantation was active (burnt out in 1939), the high
 leaching soil conditions and the success of native species in re-colonising the site,
 contamination levels of these types may have somewhat abated in the shallow soils.
- Illegally dumped waste material was observed across the site, which included abandoned vehicles, construction and demolition waste (including potential asbestos cement materials), waste oil and chemical containers and domestic wastes. It was suggested that some localised contamination to soils and possibly shallow groundwater may have occurred as a result.

k:\fraser\geotechnical\projects\301020-02358 north tuncurry residential land development\10_engineer\10-13_en-environment\working documents\301020-02358-00-en-rep-00001 draft.doc

Page 5 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

Worley Parsons

EcoNomics

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

It was recommended that a Phase 2 contamination investigation be conducted to ascertain the extent of these potentially contaminating historical activities.

Preliminary Phase 2 Environmental Site Assessment – North Tuncurry, NSW (Draft) (June 2006), ERM Australia

The purpose of this preliminary intrusive site assessment was to identify impacts resulting from onsite past and present activities on and/or adjacent to the site, which may affect future land use. The overall assessment included a targeted soil sampling program based on the findings of the Phase 1 Assessment, further assessment of the potential for impact with regard to past sand mining activities, and assessment of the need for further investigation and provision of recommendations for remedial measures as deemed necessary. Results were as follows:

- Total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) including benzo(a)pyrene were reported in shallow soils at levels exceeding the selected site assessment guidelines in the vicinity of the former airfield runway and along the electricity easement.
- A significant amount of fibrous material fragments were observed on the ground at various locations across the site (samples of which were assessed as containing asbestos fibres).
- Based on the inferred direction of shallow groundwater flow and the distance of the nearby North Tuncurry Municipal Landfill from the site, it was inferred that landfill leachate is not expected to impact shallow groundwater beneath the site.
- Potential exposure to low-level radiation (Naturally Occurring Radioactive Materials NORMs) as a result of historical nearby sand mining activities was not expected to pose a significant site risk.

Overall, the assessment identified some localised areas of impacted soil and dispersed fibrous material fragments that will warrant remediation if the site is to be developed for standard residential purposes (i.e., a more sensitive usage than the current use). It was indicated that evidence of significant gross impact across the broader site was not identified in relation to known historical and current land uses.

It was indicated that the need for site remediation will depend on the specific nature and location of the proposed development. It is anticipated that any future site development will require a site-specific and development-specific Remedial Action Plan (RAP) that will specifically address the identified areas of localised soil impact, general need to remediate illegal waste dumping sites, and the need to remove or effectively limit exposure to asbestos containing materials (ACMs).

Page 6 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

4 INVESTIGATION METHODOLOGY

4.1 Fieldwork

WorleyParsons conducted a soil investigation program giving consideration to the following standards and guidelines:

- National Environment Protection Council (NEPC) National Environment Protection (Assessment of Site Contamination) Measure, December 1999 (ref. 7);
- Australian Standard (AS 4482.1) Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds. Standards Australia Publications, 2005 (ref. 9); and
- Australian Standard (AS 4482.2) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Volatile Substances. Standards Australia Publications, 1999 (ref. 10).

Soil sampling was carried out on 12 and 13 January 2010 and comprised the augering of 16 boreholes to a maximum depth of 1.0 m below the existing ground level (m bgl) and collection of typically two targeted soil samples from each location. The boreholes were manually excavated by the use of a Sand Auger handled by WorleyParsons field engineers. Prior to the commencement of the augering, a check for buried services was carried out by referring to the plans provided in the Dial Before You Dig site-specific search.

Soil samples were collected generally at or near the existing ground surface and sub-surface (0.5 m and 1.0 m bgl). The sampling procedure comprised:

- Collection of samples off the augers using disposable nitrile gloves;
- Labelling laboratory prepared glass sample containers with individual and unique identification including: project number, sampling date, borehole number and depth;
- Placing the collected soil samples into prepared glass containers and then into a cooled, insulated and sealed 'chiller pack';
- Decontaminating all sampling equipment between individual sampling locations using a 3 % solution of phosphate free detergent and then rinsing with potable water prior to collection of each new soil sample; and
- Transportation/dispatch of samples to the responsible analytical testing laboratory under suitable Chain Of Custody (COC) documentation, a copy of which is attached in **Appendix 3**.

All soil samples were screened in the field for volatile organic compounds (VOCs) using a photo-ionisation detector (PID). The PID was calibrated with isobutylene gas prior to use. The PID readings are included on the borehole logs in **Appendix 2**.

Page 7 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

Worley Parsons EcoNomics

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

Following their completion, the boreholes were backfilled with the augered soil cuttings.

The locations of the boreholes are displayed in Figure 2 attached in Appendix 1. The borehole logs are presented in Appendix 2 and are preceded by explanatory notes of descriptive terms and symbols used in their preparation.

Selected site photographs are presented in **Appendix 4**.

4.2 Laboratory Testing

A total of 54 soil samples (including four duplicates) were collected, with 44 of these selected for laboratory analysis. These samples were submitted to the following laboratories:

- Primary laboratory Ecowise Environmental (Ecowise) in Melbourne.
- Secondary laboratory MGT Environmental Consulting Pty Ltd (MGT) in Melbourne.

Both Ecowise and MGT are accredited by the National Association of Testing Authorities (NATA), Australia for the analyses undertaken.

The soil samples selected for analysis were chosen to provide a representative indication of site soil contamination. The selected samples were analysed for the following potential contaminants:

- TPH, Mono-Aromatic Hydrocarbons: Benzene, Toluene, Ethylbenzene, Xylene (BTEX) and PAH.
- Metals Screen (including: aluminium, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, vanadium and zinc).
- Herbicides (including Phenoxy Acetic Acid (PAA) and Triazine).
- Pesticides (including Organochlorine (OCP) and Organophosphorus (OPP)).
- pH.

The remaining 10 samples not selected for analysis were placed on "hold" at the laboratory to allow further analysis at a later date, if required (typically across a one-month nominal holding period). All analyses were conducted within the soil sample holding times recommended by AS 4482.1-2005 (ref. 9). Copies of the NATA certified laboratory reports and a summary table of the environmental laboratory test results are provided in **Appendix 3**.

4.3 Quality Assurance / Quality Control – Analytical Data

Quality Assurance (QA) is the policies, procedures and actions established to provide and maintain a degree of confidence in data integrity and accuracy. Quality Control (QC) is a sample or procedure intended to verify performance characteristics of a system. A QA/QC program was implemented

k:\fraser\geotechnical\projects\301020-02358 north tuncurry residential land development\10_engineer\10-13_en-environment\working documents\301020-02358-00-en-rep-00001 draft.doc 301020-02358: 00-EN-REP-0001Rev A: 28 April 2010

Page 8

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

during the assessment in general accordance with the guidelines provided in the NEPM (1999) (ref. 7) and the Australian Standard (AS 4482.1-2005) (ref. 9) to ensure the reliability of analytical data.

The primary objectives of this process were to ensure that data of known quality was reported, and to identify if the data could be used to fulfill the overall project objectives. The process involved the checking of analytical procedure compliance and assessment of the accuracy and precision of the analytical data from a range of QC measurements generated from both the sampling and analytical programs.

Specific parameters that were checked and assessed by WorleyParsons for this project included:

- · Collection of split and blind field duplicate samples;
- Storage and preservation of samples upon collection and during transport to the laboratory;
- Transportation of samples with accompanying COC documentation;
- Compliance with sample holding times and use of appropriate analytical procedures;
- Review of laboratory blind and split duplicate samples result;
- Review of internal analysis of laboratory duplicates, spikes and blanks; and
- Review the occurrence of apparently unusual or anomalous results, such as, laboratory results that appear to be inconsistent with field observations or measurements.

A quantitative measure of the accuracy of the check analyses results obtained was made using a calculated relative percentage difference (RPD) values. The RPD values were calculated using the following equation.

$$RPD(\%) = \frac{(Co - Cs)}{\left(\frac{Co + Cs}{2}\right)} \times 100$$

Where, Co = concentration obtained from original sample

Cs = concentration obtained from the duplicate sample

The calculated RPD values and summary of the above-mentioned analytical data validation results are included in **Appendix 3**.

4.4 Health and Safety Protocols

Fieldwork conducted as part of this investigation was performed in general accordance with protocols and procedures documented in the WorleyParsons 'OneWay' management framework which establishes corporate expectations for how we will progress towards vision of zero harm. A Health and Safety Management Plan was prepared for the fieldwork program. The purpose of the plan was to establish personal protection standards and mandatory safe working practices to minimise health and safety risks to employees, sub-contractors and the general public during field activities.

k:\fraser\geotechnical\projects\301020-02358 north tuncurry residential land development\10_engineer\10-13_en-environment\working documents\301020-02358-00-en-rep-00001 draft.doc

Page 9 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

5 REGULATORY FRAMEWORK AND APPLICABLE GUIDELINES

In accordance with Section 105 of the NSW Contaminated Land Management Act 1977 (CLM Act) (ref. 1), the relevant guidelines considered to be applicable in this investigation are discussed below. Reference with regard to the duty to report contamination under the CLM Act (ref. 1) is provided in the document "Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997" (ref. 3).

The investigation criteria for soil were established based on the following guidelines:

- NSW DEC (2006) Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition), NSW Department of Environment and Conservation, Sydney (ref. 2);
- NSW EPA (1994) Contaminated Sites: Guidelines for Assessing Service Station Sites, NSW Environment Protection Authority, Sydney (ref. 6); and
- NEPC (1999) National Environment Protection (Assessment of Site Contamination) Measure 1999, National Environment Protection Council, Canberra (ref. 7).

Other references were used to supplement the above guidelines, where appropriate.

The NSW DEC (2006) *Guidelines for the NSW Site Auditor Scheme* (ref. 2) and the NEPC 1999 (ref. 7), present soil investigation levels based on health-based soil investigation levels (HBIL) for different land-uses (as discussed below), as well as provisional phytotoxicity-based ecological investigation levels (EIL).

The investigation levels are provided for a number of land use scenarios including:

- 'A' Residential with gardens and accessible soil, including children's day-care centres, preschools, primary schools, townhouses, and villas;
- 'D' Residential with minimal access to soil, including high-rise apartments and flats;
- 'E' Parks, recreational open space, playing fields, including secondary schools; and
- 'F' Commercial or industrial.

Based on the proposed residential development for the site, the HBIL for residential land use, provided in Column 1 'A' of Appendix II in the NSW DEC (2006) *Guidelines for the NSW Site Auditor Scheme (2nd edition)* (ref. 2) have been adopted in this investigation.

The NSW EPA (2006) guideline (ref. 2) do not provide threshold levels for volatile petroleum hydrocarbon compounds. In the absence of investigation levels for petroleum hydrocarbons, the NSW EPA (1994) *Contaminated Sites: Guidelines for Assessing Service Station Site* (ref. 6) threshold concentrations for sensitive land use have been adopted.

Page 10 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

Consideration should also be made if contamination does not cause the land to be aesthetically offensive to the senses of humans. Generally, the land is considered to be aesthetically acceptable if the soils are free of chemical substances or wastes, staining or odours. Potential beneficial use of the land should be assessed during fieldworks for the presence of visual or olfactory evidence of contamination. As an example, significant soil staining or the presence of demolition waste or rubble could be an issue to consider.

The adopted soil investigation levels are included in Table 1 of Appendix 3.

Page 11 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

6 ASSESSMENT OF SOIL CONTAMINATION

6.1 Site Specific Geological Conditions

Lithological logs are provided in **Appendix 2**. The geological profile encountered during the soil investigation program consisted of sandy topsoil with traces of organics, underlain by light grey brown sand, which is consistent with the expected geology. The general soil profile observed at the site is described below.

0 - 0.05 m bgl : Topsoil (SAND), rootlets, light grey, dry.

0.05-0.3 m bgl : SAND and organic matter, traces of rootlets, grey brown, fine grained, moist.

0.3 – 0.8 m bgl : SAND, high quartz content, light grey, well sorted, moist.

0.8 – 1.0 m bgl : SAND and mottled dark grey organic matter, light brown, well sorted, moist to

wet.

A description of soil lithology encountered at each location, including samples collected, is presented in the borehole logs provided in **Appendix 2**.

Other notable observations recorded during the soil investigation activities included:

- PID readings were measured and ranged from 0 ppm to 51 ppm. PID readings were recorded above 5 ppm at borehole locations: BH7, BH8, BH11, BH13 and BH15, however no hydrocarbon-like odours were observed.
- Imported fill observed from the 'crushed rock' surface area located in the southern part of the site.
- Hydrocarbon-like odours were observed and PID readings were measured at 25 ppm and 9 ppm in targeted soil samples 'Surface 1' and 'Surface 2' respectively, collected from within the 'crushed rock' surface area, located adjacent to the beginning of golf course access road. It was noted that a couple of council workers were undertaking truck maintenance work at the site, and engine oil was observed to have been released to the ground at this area.
- Groundwater was not encountered during the soil investigation.

VOC concentrations were measured in the field using a calibrated PID as a means of identifying potentially contaminated soils. Equipment error was encountered during the sampling program, as readings were increasing and not stabilizing, despite VOCs not being detected in the ambient environment. This was verified by turning off and turning the PID back on. In general VOC concentrations were below detection limits, which is consistent with the concentration of VOCs in the samples reported as below laboratory limits of reporting (LOR).

Page 12 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

6.2 Soil Analytical Results

A comparison of soil analytical results compared to the relevant guidelines considered to be applicable to this investigation, in accordance with Section 105 of the NSW Contaminated Land Management Act (1977) (ref.1) are discussed below and are summarised in the Table 1 of **Appendix 3**.

6.2.1 Protection of Highly Modified Ecosystems

Chemical concentrations at the site have been compared with EILs (refer to Table 1). Except the two target samples collected from the crushed rock surface area and sample BH6/0.05-0.15 which reported nickel concentration above the investigation level, the remaining soil samples reported concentrations of: inorganics, TPH, BTEX, PAH, herbicides, pesticides as either below the guideline values or less than the laboratory LOR.

No guideline values were available for aluminium and iron. However, with exception of the targeted surface soil samples, reported aluminium and iron concentrations for the other samples ranged between 17 mg/kg (BH5/0.4-0.5) to 3,200 mg/kg (BH12/0.1-0.2), and 11 mg/kg (BH7/0.5-0.6) to 6,600 mg/kg (BH12/0.1-0.2). The targeted samples: 'Surface 1' and 'Surface 2' reported aluminium concentrations at 1,200 mg/kg and 9,100 mg/kg respectively, and iron concentrations at 2,500 mg/kg and 31,000 mg/kg respectively.

No ecological guideline values were available for comparison against: PAH, BTEX and TPH concentrations except the adoption of NSW EPA *Guidelines for assessing service station sites* (1994) (ref. 6) threshold concentrations, protective of terrestrial organisms in soil for Toluene, Ethyl benzene and Total xylenes (TEX). Where target samples were analysed for TEX, the reported concentrations in 'Surface 2' were below the threshold concentrations however concentrations in 'Surface 1' were above the NSW EPA guideline values (ref. 6).

6.2.2 Protection of Human Health

With the exception of samples: BH6/0.05-0.15, Surface 1 and Surface 2, all soil sample results reported below the adopted HBIL for 'sensitive residential'. The nickel concentration (950 mg/kg) in sample (BH6/0.05-0.15) was above the HBIL of 600 mg/kg.

The PAH (Total) concentrations in targeted soil samples 'Surface 1' and 'Surface 2' were above the HBIL of 20 mg/kg. The NSW EPA *Guidelines for assessing service station sites* (1994) (ref. 6) threshold concentrations for BTEX and TPH were adopted in evaluating the reported concentrations in 'Surface 1' and 'Surface 2' samples. The concentrations of TPH: C_6 - C_9 fraction for both samples (Surface 1 and Surface 2) were reported at <100 mg/kg and <20 mg/kg respectively. Sample 'Surface 2' falls within guideline, however, the reported concentration of <100 mg/kg in sample 'Surface 1' falls above the guideline concentration of 65 mg/kg. The reported concentrations of TPH C_{10} - C_{36} fractions for soil samples 'Surface 1' and 'Surface 2' were respectively above and below the guideline of 1,000 mg/kg.

Page 13 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

BTEX concentrations in sample 'Surface 2' were reported below the laboratory LOR. Except benzene (<0.5 mg/kg), detected TEX concentrations of 2.6 mg/kg, 1.6 mg/kg and 18 mg/kg respectively were reported in sample 'Surface 1'.

6.2.3 Aesthetics

Potential issues with regard to aesthetics are likely to include the near-surface soil staining as a result of engine oil discharge which were observed present within the crushed rock area at the junction of the road way leading to the golf course, and illegally dumped waste materials including: domestic waste, construction and demolition waste, pieces of scrap metal and abandoned cars observed across the site. ACMs were not observed during the field work undertaken by WorleyParsons.

6.3 Discussion on pH and Potential for Acid Sulfate Soils

6.3.1 Soil pH Consideration

With pH results for soil, the water component of the soil is where pH is measured. Dissolved chemicals cause the soil to be either acidic or alkaline. In this case analytical laboratory testing indicated a pH range between 4.2 to 6.2, with an average pH of 5. This suggests that the shallow soils are slightly acid.

- This level of acidity is just outside the ideal range for plant growth.
- The Australian piling code AS 2159-1995 (ref. 11) suggests that for steel corrosion, pH within the range 5 to 9 is not a determining factor.
- No testing was conducted for sulfate in soil, which represents a potential data gap (see discussion below).

6.3.2 Potential for Acid Sulfate Soils

Acid Sulfate Soils (ASS) are soils containing iron sulfides (mostly pyrite (FeS_2) with typically smaller quantities of iron monosulfides (FeS)). If the iron sulfides are exposed to atmospheric oxygen, they can be oxidised. This produces a mix of: sulfuric acid, aluminum, iron and other metals, that can move into coastal waters, often causing significant impacts to the environment and built environment.

The iron sulfides are generally contained in a layer of waterlogged soil in their natural state. This layer can be clay or sand. Shallow water prevents oxygen in the air reacting with the iron sulfides. This layer is commonly known as potential acid sulfate soil (PASS), because it has the potential to oxidise to sulfuric acid

As a consequence of these conditions prevailing in the Holocene period, many Australian low-lying coastal plains have tracts of Potentially Acid Sulfate Soils (PASS) or ASS.

Page 14 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

Draining of floodplains and wetlands on the coast or drying of usually inundated wetlands inland results in permanently saturated soils becoming exposed to the atmosphere. When this occurs, this exposure causes a number of chemical reactions, resulting in a build-up of sulfuric acid, iron and aluminium.

In general, iron sulfide layers may be expected to occur where the surface elevation is less than 5 m above mean sea level. In Australia, iron sulfide layers are found along the coastlines of the Northern Territory, Queensland and New South Wales. They are also found along the northern coastline of Western Australia, and around Perth, Adelaide and Westernport Bay near Melbourne.

The level of acidity observed in these relatively shallow site soil samples, coupled with the general observation that aluminium and iron concentrations in soils are typically higher in near-surface soil samples than deeper samples at the same locations, would suggest that these sands may be PASS.

Page 15 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

7 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the soil investigation undertaken as part of this SCI, the following may be concluded:

- Based on the information provided by DMR (1988) (ref. 15), the site is located in a region known for heavy mineral sand resources. These sediments are mature, quartz-rich "marine" and aeolian sands, which contain a mature suite of heavy metals (*rutile, zircon, ilmenite* and *monazite*). It is likely that the high iron concentrations reported in the samples collected are represented by the presence of *rutile* and *ilmenite*. These sediments are noted to be present in Quaternary coastal beach ridge barriers and dunes. Relevant to the concentrations reported to date, iron is deemed to be naturally occurring.
- With the exception of one nickel concentration in a near surface soil sample at location BH6, the other inorganic concentrations were below the adopted 'tier-one' guidelines for maintenance of ecosystems and human health guidelines.
- Petroleum hydrocarbon contamination was encountered in surface soils collected from the 'crushed rock' area located adjacent to the beginning of the golf course access road.
- Aluminium and iron concentrations were typically higher in near-surface soil samples than deeper samples at the same sampling location, which would suggest that these sands may be PASS.
- Other than the above mentioned, all reported chemical concentrations were below the adopted maintenance of ecosystem and protection of human health guidelines (residential).
- Potential issues with regard to aesthetics include: the near surface soil staining observed to
 be present within the 'crushed rock' area adjacent to the golf course access way, the obvious
 illegally dumped waste materials across the site (near surface) and the potential for other
 waste and ACMs as outlined in Section 6.2.
- Groundwater was not assessed within the general work scope but shallow groundwater is expected to be present.

Based on the findings and observations during this SCI, WorleyParsons recommends that a combination of remediation works and management procedures be implemented at the site during development. Remediation works would initially involve the removal of illegally dumped waste materials (e.g., domestic waste, construction and demolition waste, pieces of scrap metal and abandoned cars) observed across the site, and the removal of the near surface impacted soil within the 'crushed rock' surface area located adjacent to the beginning of golf course access road. Remediation of localised hydrocarbon impacted soil may involve either treatment (on or off site) or off-site disposal. A suitable environmental consultant should be present during the removal of the soil, for

Page 16 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

Worley Parsons

EcoNomics

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

the purpose of identifying and sampling potentially impacted soil that may be encountered during these works.

WorleyParsons recommends the following for Landcom's consideration.

- Conduct the assessment of shallow groundwater conditions across the site and for areas adjacent to potential off-site contaminated sources (landfill) with respect to human health and ecological risk.
- Checks should be made on these shallow sand soils at the site for PASS with additional field soil sampling and laboratory anaytical testing including:
 - i. Field screening allowance for pH_{field} and pH_{fox,}; and
 - ii. Presence of PASS and Actual Acid Sulfate Soil (AASS). This testing (given we have sands) should utilise the 'Chromium Suite' that includes the analysis for pH_{KCL}, Chromium Reducible Sulfur (SCR), Titratable Actual Acidity (TAA) and Acid Neutralisation Capacity (ANC). These results will combine to assess net acidity and if-required, potential lime treatment rates for excavated/exposed soils using Acid-Base Accounting.
- Appropriate management of waste materials during removal from site.
- Preparation of a Remediation Action Plan (RAP), which will outline the remediation goals, methods of remediation and validation requirements. This would include information on removal and/or remediation of contaminated soils, and other information.
- Implementation of the RAP to remediate the site in association with the Master Planning exercise for the proposed development, so that the site does not pose a risk to human health or the environment.
- It is expected that this RAP would include as a required future stage:
 - Preparation and implementation of an appropriate Construction Management Plan to provide guidance on the approach, management of contaminated soil and generation during site construction; and
 - ii. Preparation and implementation of an appropriate Site Management Plan to risk manage any residual contamination that remain on site (post-remediation).

Page 17 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

Worley Parsons

EcoNomics

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

8 REFERENCES

- 1) NSW Government (1997) Contaminated Land Management Act 1997 No 140.
- 2) NSW DEC (2006) Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition), NSW Department of Environment and Conservation, Sydney.
- NSW EPA (2009) Contaminated Sites: Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997, New South Wales Environment Protection Authority (June 2009).
- 4) NSW EPA (1995) Contaminated Sites: Sampling Design Guidelines. New South Wales Environment Protection Authority.
- 5) NSW EPS (2000) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. New South Wales Environment Protection Authority.
- 6) NSW EPA (1994). Contaminated Sites Guidelines for Assessing Service Station Sites. New South Wales Environment Protection Authority (December 1994).
- 7) NEPC (1999). National Environment Protection (Assessment of Site Contamination) Measures. National Environment Protection Council (NEPC).
- ANZECC (1992). Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites. Australian and New Zealand Environment Conservation Council, (January 1992).
- 9) Australian Standard AS 4482.1–2005 "Guide to the sampling and investigation of potentially contaminated soil, Part 1: non-volatile and semi volatile compounds"
- 10) Australian Standard AS 4482.2 (1999). Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 2: Volatile Compounds. Australian Standard (AS).
- 11) Australian Standard AS 2159-1995 "Piling Design and Installation".
- 12) Phase 1 Environmental Site Assessment Landcom, North Tuncurry, NSW (Draft Report) (January 2006), Environmental Resources Management (ERM) Australia.
- 13) Preliminary Phase 2 Environmental Site Assessment North Tuncurry, NSW (Draft) (June 2006), ERM Australia.
- 14) Newcastle Geological Map 1:250,000 (Sheet S1 56-2) sourced from the Geoscience Australia Government website www.ga.gov.au.
- 15) J. Roberts, B. Engel and J. Chapman (June 1988) *Geology of the Camberwell, Dungog and Bulahdelah 1:100,000 Sheets*, Geological Survey of New South Wales Department of Mineral Resources (1988).

Page 18 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT SOIL CONTAMINATION INVESTIGATION

9 LIMITATIONS

This report was prepared for the exclusive use of LANDCOM, and is intended to provide LANDCOM with an understanding of the potential for environmental contamination at the Site. The scope of services performed in completing this investigation may not be appropriate to satisfy the needs of other users, and any use or re-use of this report or the findings, conclusions, or recommendations presented herein is at the sole risk of said user.

The findings and recommendations in this report are based upon data and information obtained during a visit by WorleyParsons personnel to the Site identified herein and the condition of the Site on the date or period of the visit, supplemented by information and data obtained by/or provided to WorleyParsons and described within this report.

The WorleyParsons work as covered by this report was completed in accordance with the agreed Terms and Conditions associated with the following series of documents:

- LANDCOM North Tuncurry Coastal Hazard & Flood Study Brief, May 2009.
- WorleyParsons Tender 996/09 North Tuncurry Coastal Hazard & Flood Study, dated 19 January 2010; and
- WorleyParsons Revised Tender 996/09 North Tuncurry Revised Fee, dated 12 October 2009.

The conclusions provided herein by WorleyParsons are based upon the agreed scope of work as prescribed in these documents.

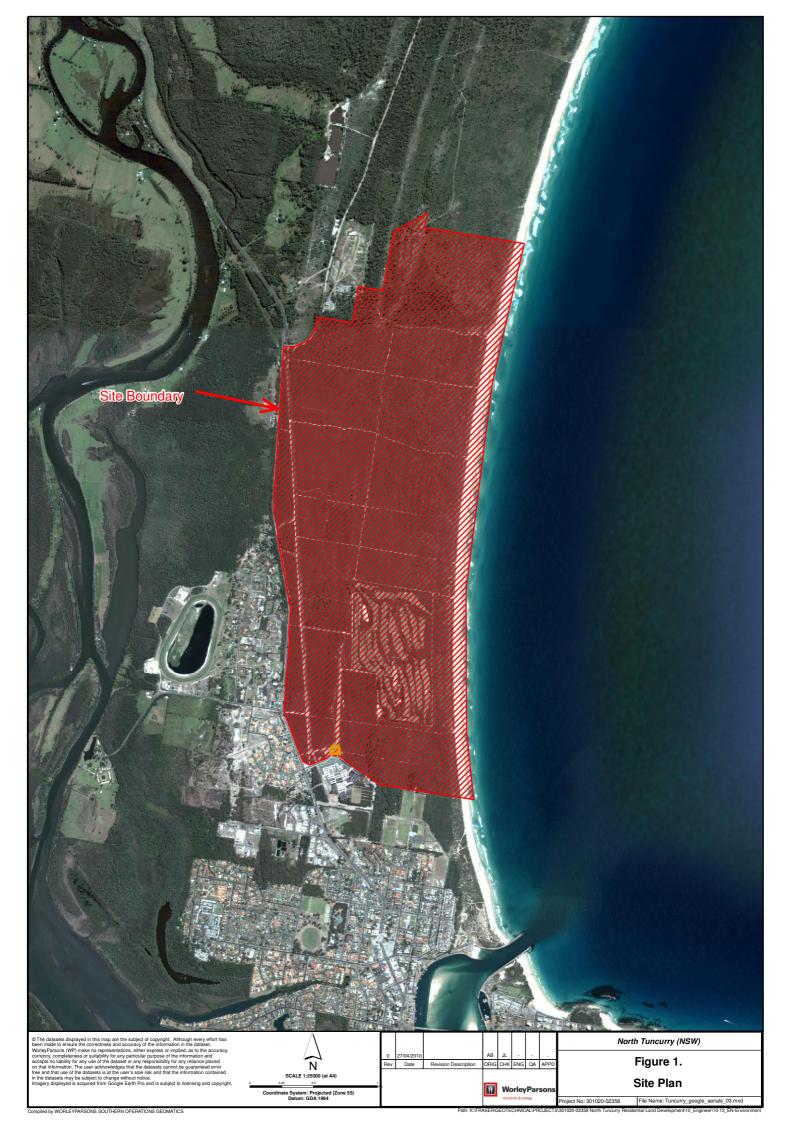
The report has been prepared in accordance with industry standard practices. The completed work outlined in this report was based in part on visual observations of the Site and associated conditions. The professional opinion expressed by WorleyParsons cannot be extended to areas of the Site that were unavailable for direct observation.

The objective of the project was to assess the environmental conditions of the Site with respect to existing environmental regulations and practices, but excludes the compliance of past owners/tenants with Council, State and/or Federal regulations or laws.

Conclusions in this report may be based on information provided by others, which is believed to be accurate but cannot be guaranteed.

It should be recognised that this study was not intended to be a definitive investigation of contamination at the Site (for example a detailed investigation of groundwater contamination potential was not conducted with the agreed scope of work). Given that the scope of the services for this investigation included limited soil sampling and analytical testing, it is possible that currently unrecognised contamination may remain at the Site, and, if present, that the levels of contamination may vary.

Page 19 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010



resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

Appendix 1 Figures

Page 1 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

Appendix 2 Soil Borehole Logs

Page 1 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

EXPLANATORY NOTES FOR BOREHOLE/VIBROCORE LOGS

Geotechnical logging is carried out in general accordance with Australian Standard AS 1726 - 1993 "Geotechnical site investigations". The description of soils is based on the Unified Soil Classification system and includes type, plasticity, particle characteristics, colour and minor components. Classification of soils is based on particle size distribution and plasticity, in accordance with Appendix A of AS 1726 - 1993. The terminology used by Worley Pty Ltd to describe the condition of soils for logging purposes is summarised below.

MOISTURE CONDITION

Term	Symbol	Field Guide
Dry	D	Looks and feels dry. Cohesive soils usually hard, friable or powdery. Granular soils are cohesionless and free running
Moist	М	Feels cool and darkened in colour. Cohesive soils can be moulded by hand. Granular soils tend to cohere
Wet	W	Feels cool and darkened in colour. Cohesive soils usually weakened and free water forms on hands when remoulding. Granular soils tend to cohere

CONSISTENCY OF COHESIVE SOILS

Term	Symbol	Undrained Shear Strength (kPa)	Field Guide
Very Soft	VS	Less than 12	Exudes between fingers when squeezed in hand
Soft	S	12 to 25	Can be moulded by light finger pressure
Firm	F	25 to 50	Can be moulded by strong finger pressure
Stiff	St	50 to 100	Cannot be moulded by fingers, can be indented by thumb
Very Stiff	VSt	100 to 200	Can be indented by thumb nail
Hard	Hd	More than 200	Can be indented with difficulty by thumb nail

DENSITY OF GRANULAR SOILS

Term	Symbol	Density Index (%)
Very Loose	VL	Less than 15
Loose	L	15 to 35
Medium Dense	MD	35 to 65
Dense	D	65 to 85
Very Dense	VD	More than 85

PLASTICITY OF FINE GRAINED SOILS

Term Range of Liquid Limit (%)

Low Plasticity

Medium Plasticity

35 to 50

High Plasticity

More than 50

MINOR COMPONENTS

Term	Field Guide	Material Proportion
Trace of	Presence just detectable	Coarse grained soils less than 5 % Fine grained soils less than 15 %
With some	Presence easily detectable	Coarse grained soils between 5 to 12 % Fine grained soils between 15 to 30 %

SAMPLE/TEST

Details of field testing (and samples retrieved) including the following:

SPT Standard Penetration Test (blows per 150mm and N value), HB - hammer bouncing, RW - rod weight

U 63mm diameter Thin Walled Tube Sample

HV Hand Vane Test

PP Pocket Penetrometer Test

Bs Bulk Sample

Disturbed Sample Interval (laboratory test result can be provided or alternatively type of test indicated "X")

CEMENTATION CLASSIFICATION

Term	Symbol	Definition
Uncemented	Uc	Clean grains exhibiting soil properties
Very weakly cemented	Vwk	Cement on some grains, collapsing feel under very light finger pressure
Weakly cemented	Wk	Cement on many grains, collapsing feel under finger pressure, breaks down to individual grains
Moderately weakly cemented	l Mwk	Cement on most grains, breaks down to lumps under finger pressure, can crush to individual grains under knife blade
Moderately cemented	Мо	Cement on most grains, can break fragments off by hand and crush to small lumps under knife blade
Well cemented	We	All grains cemented together, cannot break fragments off by hand, dull sound under hammer
Very well cemented	Vwe	Most primary pores filled with cement, requires firm blow with hammer to break off fragments, rings when struck

Notes:

- 1. The cementation classification in AS 1726 1993 is provided for soils.
- 2. The above classification system uses terms commonly adopted by geotechnical engineering practice in Western Australia.

DEFECT SPACING

Term	Symbol	Definition
Extremely Wide	Ew	More than 2m
Wide	W	600mm to 2m
Moderate	M	200 to 600mm
Close	С	60 to 200mm
Very Close	Vc	20 to 60mm
Extremely Close	Ec	Less than 20mm

ROCK MASS WEATHERING

Weathering of the rock mass in relation to the distribution of weathered materials and the effect of defects is described below.

Grade	Description
I	No visible sign of weathering except perhaps staining on defect surfaces
П	Almost all rock is discoloured by slight weathering
III	Less than half of the material is moderately to extremely weathered, some residual boulders/corestones may be present
IV	More than half of the material is moderately to extremely weathered, occasional corestones may be present
V	The material is extremely weathered with mass structure largely intact
VI	Refer to soil classification system

Note

 The above weathering grades apply to relatively large scale exposures. For boreholes, weathering terms discussed previously apply.

ROCK MASS BLOCK SHAPE

Blocky Equidimensional

TabularThickness much less than length or widthColumnarHeight much greater than cross section

KEY TO DEFECT DESCRIPTIVE TERMS USED ON CORED BOREHOLE LOGS (SHEET 2 of 2)

DEFECT DESCRIPTORS

а	Type:
u	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- F Fault
- J Joint
- Fo Foliation
- V Vein
- B Bedding
- S Shear
- Dip of fracture surface measured relative to a plane perpendicular to core axis (dip direction to be provided if core orientated)

c Planarity:

- Un Undulating, wavy surface
- PI Planar, no variation in orientation
- St Stepped, well defined steps present
- Ir Irregular, many changes in orientation

d Roughness:

- Slk Slickensides, visual evidence of striations
- S Smooth, surface appears and feels smooth
- SR Slightly rough, asperities on the defect surface are distinguishable and can be felt
- R Rough, some ridges and angle steps are evident, asperities are clearly visible and surface feels abrasive
- VR Very rough, near right angle steps and ridges occur on the defect surface

e Type of Infilling:

- CI Clay
- Ca Calcite
- Ch Chlorite
- Fe Iron oxide
- Gy Gypsum
- H Healed
- Mn Manganese oxide
- Gr Gravel
- Py Pyrite
- Qz Quartz
- Sd Sand
- CA Calcrete Si - Silt
- Uk Unknown

f Amount of Infilling:

- Cn Clean, no visible coating or infilling
- Su Surface Stain, no visible coating or infilling but surfaces are discoloured
- Vn Veneer, a visible coating or infilling too thin to measure, may be patchy
- Co Coating, visible coating or infilling up to 1mm thick
- Fi Filled, coating or infilling greater than 1mm thick with amount in millimetres. Thick soil infilling to be described as seams if boundaries roughly parallel, or crushed seams if composed of rock fragments e.g. brecciated

Notes:

- Cores with defect spacings in the range extremely close to close can be collectively denoted as "highly fractured" where considered appropriate
- 2. NR not recorded NA not applicable

CORED **BOREHOLE LOG**

BOREHOLE NO .:

SHEET: OF

CLIEN	NT:						DATE COMMENCED:											
PROJ	EC	Г:							[DATE CO	OMF	PLE	TEC):				
LOCA	TIO	N:					LOGGED BY:											
JOB NUMBER: CHECKED BY:								Y:										
Drill C	ontra	ctor:				Drill Fluid:	Hole Angl	e:			Eas	ting:				Surface R.L.:		
Drill M	lodel:					Bore Size:	Bearing:				Nor	thing	Į:			Datum:		
													Lab	Te	sts			
Method Casing	Drill Rate (min/m)	RL (m)	Depth (m)	Geological Unit	Graphic Log	Material Description		Cementation/ Weathering	Estimated Strength	Defect Spacing (mm)	Lift & Core Recovery (%)	RQD %	PLI (MPa)	ITS (MPa)	Other	Field Records / Comments and Defect Description		Water
PQ-3		13.0	4 _ - - 0.5	Marine Sands ज	6	CARBONATE SAND (SP): fine to medium grain subrounded, pale grey, trace fine grained carbo gravel (shells).	onate 🗀	8 CL	9	10	11	12	1:			Probe refusal between 0.4 to 0.7m. Material description based on grab sample. - Core loss: 0 to 0.6m	4 [- -	16
		13.5	1. <u>0</u>	Coastal Limestone		CALCIRUDITE: fine to medium grained compris shells/shell fragments and rounded lithic clasts 15mm in calcarenite matrix, granular texture, gr white, pale brown. 0.9 to 1.1m: some borings grading to calcarenite	to	Mo-Mwk	L-M		1 / 60	27	0,42			「自り Cide († 15 - B, 30, PI, R, CI, Vn -		
	KEY TO CORED BOREHOLE LOG (SHEET 1 OF 2)																	

The top section of the log is self explanatory giving details of the project including the client, location, drill contractor, job number, date, logger, drill information and survey data. The main part of the log is summarised below.

- METHOD: Drill method; PQ-3 Core, HQ-3 Core, Washbore etc 1
- CASING: Depth and size of casing or open hole 2
- 3 DRILL RATE: Time to drill/core interval (minutes per metre)
- 4 RL/DEPTH: Elevation relative to datum or distance in metres below ground level
- GEOLOGICAL UNIT: Identification of the geological unit (if known) or symbol used for identification of geological unit on 5 site plan
- 6 GRAPHIC LOG: Graphic pattern of rock or material type
- MATERIAL DESCRIPTION: Lithologic description in the order; rock or material type, grain size and shape, texture/fabric, 7 colour, mineral composition or minor inclusions
- 8 CEMENTATION: Rock cementation descriptor e.g. Coastal Limestone and pedocretes
 - WEATHERING: Rock weathering descriptor e.g. most rocks and ancient limestones
- ESTIMATED STRENGTH: Rock strength descriptor 9
- 10 DEFECT SPACING: Graphic record of spacing between natural pre-existing defects. Known breaks induced by drilling or handling core (denoted as "m") are discounted. Zones of core loss are left blank
- LIFT/%REC: The end of a core run is defined as the lift. Core recovery represents the ratio of core recovered to the length 11 drilled for the corresponding core run and is expressed as a percentage. Intervals of core loss are denoted "CL"
- RQD: Rock Quality Designation; is the ratio of the length of sound core recovered in pieces over 100mm to the length of 12 core run drilled. Mechanical breaks are discounted
- TESTS: Field or laboratory test results e.g. point load index (diametral-D or axial-A), uniaxial compressive strength, 13 indirect tensile strength (Brazil test)
- 14 FIELD RECORD/COMMENTS: Comments on drilling, fluid loss, core loss, sampling etc
- DEFECT DESCRIPTION: Annotated description using terms described on the following page (Items a to f) 15
- WATER: Water level/depth; time (24 hr clock) and date to be provided 16

Notes on RQD:

- Residual soil, extremely weathered material and highly weathered rock are judged not to be representative of sound core. Very weakly cemented, weakly cemented and moderately weakly cemented materials are judged not to be representative of sound core.
- Engineering judgement is required when assessing RQD in variably cemented limestone containing cavities, and should therefore be used as indicative only.

EXPLANATORY NOTES FOR CORED BOREHOLE LOGS

Geotechnical logging is carried out in general accordance with Australian Standard AS 1726 - 1993 "Geotechnical site investigations". The terminology used by Worley Pty Ltd to describe the condition of rocks and associated materials for logging purposes is summarised below.

WEATHERING CLASSIFICATION

Term	Symbol	Definition
Residual Soil	RS	Soil derived from the weathering of rock, the mass structure and substance fabric are no longer evident, there is a large change in volume but the soil has not been significantly transported
Extremely Weathered Materia	al XW	Material is weathered to such an extent that it has "soil" properties i.e. it either disintegrates or can be remoulded in water. Original fabric still evident
Highly Weathered Rock	HW	Rock is weathered to such an extent that it shows considerable change in appearance and loss in strength. Material is still a rock but of relatively low strength
Moderately Weathered Rock	MW	Rock is weathered to such an extent that it shows a visible change in appearance with significant loss in strength
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock
Fresh Rock	FR	Rock shows no sign of decomposition or staining

Notes

- AS 1726 1993 suggests the term "distinctly weathered" to cover the range from extremely weathered to slightly weathered. For projects where it is judged that there is no advantage in differentiating between highly weathered and moderately weathered, "distinctly weathered" may be adopted using the definition given in AS 1726 - 1993.
- 2. Moderately weathered and highly weathered definitions above are taken from AS 1726 1981

ROCK MATERIAL STRENGTH

Term	Symbol	Point Load Index I _{s(50)} (MPa)	Field Guide
Very Low	VL	Less than 0.1	Material crumbles under firm blows with sharp end of geological pick, can be peeled with a knife, pieces up to 30mm thick can be broken by finger pressure
Low	L	0.1 to 0.3	Easily scored with knife, indentations 1 to 3mm show with firm blows of a pick point, has a dull sound under hammer. Pieces of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling
Medium	М	0.3 to 1	Readily scored with knife, a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty
High	Н	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow, rock rings under hammer
Very High	VH	3 to 10	Hand specimen breaks after more than one blow of a pick, rock rings under hammer
Extremely High	EH	More than 10	Specimen requires many blows with pick to break, rock rings under hammer

Notes:

- 1. The term "extremely low" is not used as a rock material strength term. Although it is stated in AS 1726 1993 the accompanying field guide clearly states that materials in that strength range are soils in engineering terms.
- 2. Anisotropy of rock samples may affect field assessment of strength.
- 3. Uniaxial Compressive Strength (UCS) values are to be stated where tested for project specific correlation with Point Load Strength Index.

LOCATION:

BOREHOLE NO.: BH1

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

Orill (Contra	ctor:	N/A		Bore Size: 50 mm	Hole Angle:		Easting:	453113 Surface R.L.:	N/A
) Drill	Model:				Drill Fluid:	Bearing:		Northing:	6445047 Datum :	
50150	Casing	RL (m)	Depth (m) Graphic Log	Classification Symbol	Material Desc		Moisture Condition	Sample / In - situ Test	Field Records /	
	Ö	0.		<u>ਹੈ ਨੰ</u>	SAND (Topsoil): light grey, fine gr SAND: greyish brown, with traces grained, moist. SAND: light brown, with some org grained quartz, moist.	ained, dry. of organic matter, fine to medium	O O	BH1/0.05-0.15 = Dup 3	PID recorded at 0.4 ppm. PID recorded at 0.3 ppm.	
		1.	- - 0		End of BH1 at 1m			BH1/0.9-1.0	PID recorded at 0.4 ppm.	-
		1.	- - 5							-
		2.	-							-

LOCATION:

BOREHOLE NO.: BH2

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

				30102	0-023			CITE	CKED BY:	JH	
	Contra		note Angle.				Easting:	453004 Surface R.L.:	N/A		
Orill	Model					Drill Fluid:	Bearing:		Northing:	6444649 Datum :	
DOLLAN	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol		ial Description	Moisture Condition	Sample / In - situ Test	Field Records / Comments	
				<u> </u>	,	SAND (Topsoil): light grey					
			-			SAND: greyish brown, with medium grained, moist.	n rootlets and some organic matter, fine	e to	BH2/0.05-0.15	PID recorded at 0.2 ppm.	_
			_			SAND: light brown, with tra grained, moist.	aces of organic matter, fine to medium				_
			0. <u>5</u>						BH2/0.4-0.5	PID recorded at 0.4 ppm.	_
			_								_
			-								-
			1.0						BH2/0.9-1.0	PID recorded at 0.2 ppm.	-
						End of BH2 at 1m					
			_								_
			_								-
			-								_
			1.5_								_
			-								_
			_								-
			_								-
			2.0								

LOCATION:

BOREHOLE NO.: BH3

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

Orill C	Contra	ctor:	N/A		Bore Size: 50 n	nm	Hole Angle:		Easting:	452224 Surface R.L.:	N/A	
Orill N	/lodel:				Drill Fluid:		Bearing:		Northing:	6443709 Datum :		_
Wethod	Casing	RL (m) Death (m)	Graphic Log	Classification Symbol	Ма	iterial Descripi		Moisture Condition	Sample / In - situ Test	Field Records / Comments		
M	<u> </u>			0.66	SAND (Topsoil): light g	rey, with rootle			BH3/0.05-0.15	PID recorded at 0.0 ppm.	-	_
		0.5	- - - - -		SAND: light greyish broquartz, moist.	own, well sorte	ed, fine to medium grained		BH3/0.5-0.6	PID recorded at 0.3 ppm.	- - -	
		1.0			End of BH3 at 1m				BH3/0.9-1.0	PID recorded at 0.2 ppm.	_	
			-		EIROBINALIII						-	_
											-	
		1. <u>5</u>									_	_
											_	_
			-								-	_

LOCATION:

BOREHOLE NO.: BH4

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

	Contra	ctor:	ſ	V/A		Bore Size: 50 mm	Hole Angle:		Easting:	452884 Surface R.L.: 1	N/A
rill N	/lodel:					Drill Fluid:	Bearing:		Northing:	6444148 Datum:	
no in a constant	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material De		Moisture Condition	Sample / In - situ Test	Field Records /	
+		Œ			. O Ø	SAND: light grey, with rootlets,		20	8 =	Comments	
						SAND: dark greyish brown, with medium grained, moist.			BH5/0.05-0.15	PID recorded at 0.1 ppm.	-
			-			SAND: light brown, well sorted,	fine to medium grained, moist.		DUEVO A O S		_
		(). <u>5</u>						BH5/0.4-0.5	PID recorded at 0.1 ppm.	_
			_								_
			1.0			Sal d DUA at 4 a			BH5/0.9-1.0	PID recorded at 0.0 ppm.	_
			-			End of BH4 at 1m					-
			_								-
			_								_
			1. <u>5</u> _								_
											_
			-								_
			2.0								

LOCATION:

BOREHOLE NO.: BH5

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

Orill (Contra			I/A	Bore Size:	50 mm	Hole Angle:		Easting:	452350 Surface R.L.:	N/A
	Model:				Drill Fluid:		Bearing:		=	6444269 Datum :	
	ouo				Driii i luid.		Bearing:		Northing.	Dutum.	
noning	Casing	RL (m)	Depth (m)	Graphic Log	Symbol	Material Descrip		Moisture Condition	Sample / In - situ Test	Field Records / Comments	
				<u> </u>			me organic matter, fine to		BH5/0.05-0.15	PID recorded at 0.3 ppm.	-
			-i: -i: -i:		SAND: light gre grained quartz,	y, with mottled black moist.	s organic matter, fine to medium				_
		С). <u>5</u> -						BH5/0.4-0.5	PID recorded at 0.4 ppm.	_
											-
		1	1.0		End of DUE and				BH5/0.9-1.0	PID recorded at 0.4 ppm.	_
			-		End of BH5 at 1	m					_
			-								-
		1	_ I. <u>5</u> _								_
											-
											-
			- 2.0								_

LOCATION:

BOREHOLE NO.: BH6

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

Orill Mo	odol.		N/A		Bore Size: 50 m								
\top					Drill Fluid:		Hole Angle: ° Bearing:		_	452540 6443336	Surface R.L.: Datum:		
	Juo				Dimirida.		Bearing:		Horumg.	0410000	Datain.		T
0	Casing	RL (m)	Graphic Log	Classification Symbol		erial Descriptio		Moisture Condition	Sample / In - situ Test		Field Records / Comments		
			<u> </u>	•	SAND (Topsoil): light gr								
			- -		SAND: greyish brown, w grained, moist.	vith some orga	nic matter, fine to medium		BH6/0.05-0.15	PID record	ed at 1.0 ppm.		_
		0.5			SAND: light grey, well so	orted, fine to m	nedium grained, moist.		BH6/0.4-0.5	PID record	ed at 0.1 ppm.	_	
			-										_
			-						BH6/0.9-1.0	PID record	ed at 0.2 ppm.		_
_		1.0		•	End of BH6 at 1m				B11070.0 1.0	T ID TOORG	оч и о.2 ррпп.		_
					Lita di Bi lo at IIII								_
			-										_
			-									,	_
		1.5	-										_
		1.0										_	_
													_
													_
		2.0											

LOCATION:

BOREHOLE NO.: BH7

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

	Contra		r	N/A		Bore Size: 50 mm	Hole Angle:			452365 Surface R.L.:	W/A
rili l	Model:			i		Drill Fluid:	Bearing:	1	Northing:	6443687 Datum:	
200	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	cription	Moisture Condition	Sample / In - situ Test	Field Records / Comments	
		ш.		<u> </u>	0 0)	SAND (Topsoil): light grey, fine g	rained, dry.	20	0) _	Comments	
			_			SAND: dark greyish brown, with a organic matter, fine grained, mois	abundant rootlets and some		BH7/0.05-0.15 = Dup 2	PID recorded at 51.1 ppm.	-
			-			SAND: dark greyish brown, with t grained, moist.	races of silt, fine to medium				_
		0). <u>5</u>			SAND: light grey, fine to medium	grained quartz, moist.				_
			-						BH7/0.5-0.6	PID recorded at 5.1 ppm.	_
			-								_
			_								_
		1	- : :0						BH7/0.9-1.0	PID recorded at 5.0 ppm.	_
						End of BH7 at 1m					
			-								=
			-								-
											_
		1	.5_								_
			-								_
			-								_
			-								-
			- 2.0								-

LOCATION:

BOREHOLE NO.: BH8

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

rill C	Contra	ctor:	- 1	N/A		Bore Size:	50 mm	Hole Angle:		Easting:	452746	Surface R.L.:	N/A	
rill N	/lodel:					Drill Fluid:		Bearing:		Northing:	6443629	Datum:		
Meliod	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Descri	ption	Moisture	Sample / In - situ Test	F	Field Records / Comments		
		<u> </u>		12 · 24 · 14 · 2		SAND (Topsoil):	light grey, with trac		20	BH8/0-0.1	PID recorded a			†
			-				with some organic with interbedded hea some rootlets, moi	c matter, dry. avily oxidised silty clay, reddis	— - sh -					_
			- 0. <u>5</u>			SAND: light grey	, with traces of silt a	and organic matter, moist.		BH8/0.4-0.5	PID recorded a	at 24.2 ppm.	_	
			-			SAND: light grey medium grained	v, with traces of silt I , moist.	amenation and rootlets, fine t	to -					
			- 1.0							BH8/0.9-1.0	PID recorded a	at 7.6 ppm.		_
						End of BH8 at 1r	n							
			1											_
			-											_
			1. <u>5</u> _										_	_
			_											_
			-											-
			2.0											

LOCATION:

BOREHOLE NO.: BH9

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

Drill C	Contra			307020 N/A		Bore Size: 50 r	nm	Hole Angle:		Easting:	452095	Surface R.L.:	N/A	
	Model:					Drill Fluid:				_	6442957	Datum:		
						Diminida.		Bearing:		Northing.	0442007	Dutum.		Т
DO INGELIOR	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Ma SAND (Topsoil): light o	aterial Descript		Moisture	Sample / In - situ Test		Field Records / Comments		
			:	<u> </u>				anic matter, fine to medium		BH9/0.05-0.15 = Dup 4	PID records	ed at 0.0 ppm.		_
		(0. <u>5</u>			SAND: grey, with trace	s of organic m	atter, well sorted, moist.		BH9/0.4-0.5	PID records	ed at 0.6 ppm.	_	_
			-			SAND: light grey, with moist.	mottled black	organic matter, well sorted,						_
			1.0							BH9/0.9-1.0	PID records	ed at 0.0 ppm.		_
			-			End of BH9 at 1m							-	_
			_											_
			_ 1. <u>5</u> _										_	_
			-											_
			-											_
			- 2.0											_

LOCATION:

BOREHOLE NO.: **BH10**

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

	Contra			N/A		Bore Size: 50 mm		Hole Angle:				452772	Surface R.L.:	IN/A	
rill l	Model:	1				Drill Fluid:		Bearing:			Northing:	6443027	Datum:		_
	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Mater	ial Descriptio	n		Moisture Condition	Sample / In - situ Test	Fi	ield Records /		
\dashv		<u> </u>		: · · · · · · · · · · · · · · · · · · ·		SAND (Topsoil): light grey				20	0) =		Comments	_	-
			1			SAND: dark grey, with sor					BH10/0.05-0.15	PID recorded a	t 0.0 ppm.		
			-			SAND: greyish brown, wit moist.	h traces of or	ganic matter, well sorte	ed, — -						
			0. <u>5</u>			SAND: light brown, fine to moist.	medium grai	ned quartz, well sorted	<u>-</u>		BH10/0.4-0.5	PID recorded a	it 0.0 ppm	_	
			-												
			-			SAND: brown, well sorted	, moist to wet								
			1.0								BH10/0.9-1.0	PID recorded a	t 0.3 ppm.		
1			1.0	27, 27, 27, 27		End of BH10 at 1m								_	
			_												
			-												
			-												
			1. <u>5</u>											_	
			_												
			_												
			-												
			2.0												

LOCATION:

BOREHOLE NO.: **BH11**

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

Drill	Contra	ctor:	١	I/A		Bore Size: 50) mm	Hole Angle:		Easting:	452294 Surface R.L.:	N/A
Drill	Model:					Drill Fluid:		Bearing:		Northing:	6442673 Datum:	
	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol	N	Material Descript		Moisture Condition	Sample / In - situ Test	Field Records / Comments	
		L.	<u> </u>	× 1/2 × 1/2	00	SAND (Topsoil): light			20	0) =	Comments	
			-			SAND: greyish brown medium grained, dry	n, with rootlets and to moist.	nd some organic matter, fine to	5-	BH11/0.05-0.15	PID recorded at 15.0 ppm.	-
		(). <u>5</u>			SAND: light grey, fine	e to medium grai	ined quartz, moist.		BH11/0.4-0.5	PID recorded at 15.9 ppm.	-
						Possible interbeds of	organic lense (d	of less than 5 mm).				-
			1.0							BH11/0.9-1.0	PID recorded at 7.6 ppm.	_
						End of BH11 at 1m						
			-									-
			-									-
												_
			_									-
			ا ,									
			1.5_									
												_
			4									-
			1									-
			4									-
		2	2.0									

LOCATION:

BOREHOLE NO.: BH12

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 12.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 12.1.2010

Drill C	ontra	ctor:		N/A		Bore Size:	50 mm	Hole Angle:	0		Easting:	452389	Surface R.L.:	N/A	
Drill M						Drill Fluid:		Bearing:			Northing:	6442338	Datum:		
	iouo					Dilli i idia.		Bearing:			Northing.	0112000	Datum.		
	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Desc			Moisture Condition	Sample / In - situ Test		Field Records / Comments		
		C	_ _ 	<u> </u>		Silty SAND: dark SAND: dark grey, well sorted, moist	brown, with trace	es of rootlets, dry to motlets, fine to medium	oist.		BH12/0.1-0.2 BH12/0.4-0.5	_	led at 0.7 ppm.	-	_
											BH12/0.8-0.9	PID record	ed at 0.1 ppm.		
		1	1.0			End of BH12 at 1r	m								_
			-												_
			-												_
			-												_
		1	- 1. <u>5</u> _											_	_
			_												_
			_												_
			-												-
			-												_
		2	2.0							l		1			

LOCATION:

BOREHOLE NO.: BH13

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 13.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 13.1.2010

л III С	Contra	ctor:	ı	N/A		Bore Size:	50 mm	Hole Angle:	1		Easting:	452291 Surface R.L.:	N/A
Orill N	Model:					Drill Fluid:		Bearing:			Northing:	6441994 Datum :	
Method	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Descri			Moisture Condition	Sample / In - situ Test	Field Records /	
≥		œ		717. 717	. O Ø	SAND (Topsoil):		ne organic matter, dry.		20	o =	Comments	
			-	17 34-14 1 10 15 1 1 15 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				me organic matter, fine	grained,		BH13/0.05-0.15	PID recorded at 9.3 ppm.	_
			- 0. <u>5</u>								BH13/0.4-0.5	PID recorded at 10.9 ppm.	-
			-			SAND: grey, with quartz, well sorte	traces of organic d, moist.	matter, fine to medium	grained				_
			- 1.0								BH13/0.8-0.9	PID recorded at 10.5 ppm.	_
			_			End of BH13 at 1	m						_
			-										-
													_
			1. <u>5</u>										_
			-										_
													-
			2.0										

LOCATION:

BOREHOLE NO.: BH14

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 12.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 12.1.2010

Orill C	ontra	ctor:		N/A		Bore Size: 50 mm	1	Hole Angle:		Easting:	452747 Surface R.L.:	N/A
Orill N	lodel:					Drill Fluid:		Bearing:		Northing:	6441931 Datum :	
Metriod	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Mate	rial Description		Moisture Condition	Sample / In - situ Test	Field Records / Comments	
-						SAND (Topsoil): brown, w dry. SAND: brown, with some medium grained, dry.		h (wood chips and barks), ganic matter, fine to		BH14/0.1-0.2	PID recorded at 2.4 ppm.	-
			-			SAND: light grey, fine to r	nedium grained	d quartz, moist.		BH14/0.4-0.5	PID recorded at 0.9 ppm.	-
			0. <u>5</u> -			Becoming fine grained qu	uartz with mottle	ed black organic matter.				-
			1							BH14/0.8-0.9	PID recorded at 0.2 ppm.	-
			1.0			End of BH14 at 1m						_
			-									-
			_ 1. <u>5</u> _									_
			-									_
			-									_
			- 2.0									_

LOCATION:

BOREHOLE NO.: **BH15**

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 12.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 12.1.2010

					0-023						CKED BY:		JH		
	Contra			N/A		Bore Size:	50 mm	Hole Angle:	0		Easting:	452844	Surface R.L.:	N/A	
Drill	Model:					Drill Fluid:		Bearing:			Northing:	6441659	Datum:		\neg
Method	Casing	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material Des			Moisture Condition	Sample / In - situ Test		Field Records / Comments		
						SAND: grey, with	traces of organ	ic matter, fine graine	ed quartz, dry.						
						SAND: light grey,	fine to medium	grained quartz, dry	to moist.		BH15/0.1-0.2	PID record	ed at 10.1 ppm.		
			0. <u>5</u> _			Becoming moist.					BH15/0.6-0.7	PID record	led at 11.7 ppm.	-	_
			1			Becoming light bro	own, and less o	quartz.							-
											BH15/0.9-1.0	PID record	ed at 0.7 ppm.		
			1.0	<u> </u>		End of BH15 at 1n	m								_
			-												-
			-												-
			_												-
			1.5_											-	
			_												-
															-
			-												-
			2.0												

LOCATION:

BOREHOLE NO.: **BH16**

LOGGED BY:

SHEET: 1 OF 1

JL & TW

CLIENT: LANDCOM DATE COMMENCED: 12.1.2010

PROJECT: North Tuncurry Soil Contamination Investigation DATE COMPLETED: 12.1.2010

Orill (Contra	ctor:	N/A		Bore Size: 50 mm	Hole Angle:		Easting:	453067 Surface R.L. :	N/A
orill I	Model:				Drill Fluid:	Bearing:		Northing:	6441890 Datum :	
ואפווסמ	Casing	RL (m)	Depth (m) Graphic Log	Classification Symbol	Material Des		Moisture Condition	Sample / In - situ Test	Field Records /	
		ır.	<u> </u>	(17)	SAND (Topsoil): brown, with som	ne mulch (wood chips and barks)), ≥ O	<i>o</i> =	Comments	_
			-		dry. Silty SAND: greyish brown, with s	some rootlets, dry.		BH16/0.05-0.15 = Dup 1	PID recorded at 1.1 ppm.	-
			- - 0.5		SAND: greyish brown, coarse gra	ained, moist.				-
			- 1.00 m		SAND: light brown, medium grain	ned, moist.		BH16/0.5-0.6	PID recorded at 0.6 ppm.	_
										_
		1	1.0		End of BH16 at 1m			BH16/0.9-1.0	PID recorded at 0.2 ppm.	_
										_
										_
		1	_ 1. <u>5</u>							_
										_
										_
			2.0							_

EcoNomics

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

Appendix 3 Tabulated Soil Results & Analytical Laboratory Reports

Page 1 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

			Site Aud	litor Scheme	e (2nd edition for urban dev	nes for the NSW n) velopment sites in	NSW EPA Service station sites (ref. 6)				T			ı	Bor	ehole Locati	ions	1			T	
		Health-	-based investi	igation levels	(mg/kg)	Provisional phytotoxicity-based	Table 3 of Service Station Sites: Assessment and		BH1	Ī		BH2	ī	В	Н3	ВІ	H4		BH5	Γ	В	3H6
	Analytes mg/kg unless stated	A ¹	D²	E ³	F ⁴	investigation levels ⁵ (mg/kg)	Remediation	BH1/0.05- 0.15	BH1/0.5- 0.6	BH1/0.9- 1.0	BH2/0.05- 0.15	BH2/0.4- 0.5	BH2/0.9- 1.0	BH3/0.05- 0.15	BH3/0.5- 0.6	BH4/0.05- 0.15	BH4/0.4- 0.5	BH5/0.05- 0.15	BH5/0.4- 0.5	BH5/0.9- 1.0	BH6/0.05- 0.15	BH6/0.4- 0.5
"	Sample Date	-	-	-	-	-	-	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010
ţio	Laboratory	-	-	-	-	-	-	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise
ori Ori	Laboratory Report Number	-	-	-	-	-	-	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693
Des	Laboratory Sample ID Assumed Depth Interval (m)	-	-	-	-	-	-	2056276 0.05-0.15	2056278 0.5-0.6	2056279 0.9-1.0	2056273 0.05-0.15	2056274 0.4-0.5	2056275 0.9-1.0	2056280 0.05-0.15	2056281 0.5-0.6	2056270 0.05-0.15	2056271 0.4-0.5	2056267 0.05-0.15	2056268 0.4-0.5	2056269 0.9-1.0	2056283 0.05-0.15	2056284 0.4-0.5
ed.	Sample Type	_	-	_	-	-	-	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sam	QA Sample	-	-	-	-	_	-	Dup 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0,	PID (ppm)	-	-	-	-	-	-	0.4	0.3	0.4	0.2	0.4	0.2	0	0.3	0.1	0.1	0.3	0.4	0.4	1.0	0.1
	pH (units)	-	-	-	-	-	-	4.7	4.9	5.1	5.1	4.6	5.1	4.7	4.9	4.8	5.2	4.7	5.1	5.1	5.1	5.2
	Aluminium (Al)	-	-	-	-	-	-	140	33	45	43	95	140	84	19	62	40	117	17	34	170	24
	Antimony (Sb)	-	- 400	-	-	- 00	-	<5 -	<5 -	<5 -	<5 -	<5 -	<5 -	<5 -	<5 -	<5 -	<5 -	<5	<5 -	<5 -	<5 -	<5 -
	Arsenic (As) (total) Barium (Ba)	100	400	200	500	20	-	<5 7	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Beryllium (Be)	20	80	40	100	-	-	/ <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Boron (B)	-	-	-	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	17	<10
	Cadmium (Cd)	20	80	40	100	3	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Total Chromium (Cr)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Cobalt (Co)	100	400	200	500	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
etals	Copper (Cu)	1000	4000	2000	5000	100	-	<5 150	<5 82	<5 250	<5 89	<5 130	<5 470	<5 110	<5 22	<5 82	<5 36	<5 120	<5 22	<5 32	9 520	<5 37
Š	Iron (Fe) Lead (Pb)	300	1200	600	1500	600	300	<5	<5	<5	<5	<5	470 <5	<5	<5	<5	<5	<5	<5	<5	47	<5
nics	Manganese (Mn)	1500	6000	3000	7500	500	-	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	6	<5
rga	Mercury (Hg) (total)	15	30	30	75	1	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
<u>은</u>	Molybdenum (Mo)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Nickel (Ni)	600	2400	600	3000	60	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	950	<5
	Selenium (Se)	-	-	-	-	-	-	<5 -	<5	<5	<5 -	<5	<5	<5	<5	<5 -	<5	<5	<5 -	<5	<5	<5
	Silver (Ag) Strontium (Sr)	-	-	-	-	-	-	<5 8	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Thallium (TI)	-	-	_	-	-	-	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Tin (Sn)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	10	<5
	Titanium (Ti)	-	-	-	-	-	-	<5	<5	5	<5	<5	9	8	7	<5	6	<5	<5	5	<5	<5
	Vanadium (V)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Zinc (Zn)	7000	28000	14000	35000	200	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	15	<5
	Acenaphthene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Acenapthylene Anthracene	-	-	-	-	-	-	<0.1 <0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	Benzo(a) Anthracene	-	-	_	-	-	-	<0.1	_	_	_	-	_	_	_	_	-	_	_	-	-	_
AHs)	Benzo(a) Pyrene	1	4	2	5	-	1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B (P	Benzo(b) Fluoranthene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
bon	Benzo(g,h,i) perylene	-	-	-	-	-	-	<0.1	-	-	-		-	-	-	-	-	-	-		-	-
ocal	Benzo(k) Fluoranthene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hydro	Chrysene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ţi.	Dibenzo(a,h) Anthracene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ma	Fluoranthene Fluorene	-	-	-	-	-	-	<0.1 <0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
yaro	Indeno (1,2,3-c,d) Pyrene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Poly	Naphthalene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Phenanthrene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Pyrene	-	-	-	-	-	-	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PAH (Total)	20	80	40	100	-	20	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S	Benzene	-	-	-	-	-	1	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Aromatic Hydrocarbons (MAHs)	Toluene	-	-	-	-	-	1.4 ⁹ / 130 ^h	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
romi oca	Ethyl Benzene	-	-	-	-	-	3.1 ⁱ /50 ^j	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
₽₹₽	Xylene	-	-	-	-	-	14 ^k /25 ^j	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ble	C6-C9	-	-	-	-	-	65	<20	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Recoverable Hydrocarbons	C10-C14	-	-	-	-	-	1	<20	-	-	-	-	-	-	-	-	-	-	-	-	-	-
d dec	C15-C28	-	-	-	-	-	1000	<50	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	C29-C36	_	-	-	-	-		<50		ı ———												-

			Site Aud	ditor Scheme	e (2nd edition for urban dev	nes for the NSW n) relopment sites in	NSW EPA Service station sites (ref. 6)								Вог	ehole Locat	ions					
		Health-	based invest	igation levels	s (mg/kg)	Provisional phytotoxicity-	Table 3 of Service Station Sites:		BH1			BH2		ВІ	Н3	В	H4		ВН5		ВІ	Н6
	Analytes mg/kg unless stated	A ¹	D ²	E ³	F ⁴	based investigation levels ⁵ (mg/kg)	Assessment and Remediation Guideline Levels	BH1/0.05- 0.15	BH1/0.5- 0.6	BH1/0.9- 1.0	BH2/0.05- 0.15	BH2/0.4- 0.5	BH2/0.9- 1.0	BH3/0.05- 0.15	BH3/0.5- 0.6	BH4/0.05- 0.15	BH4/0.4- 0.5	BH5/0.05- 0.15	BH5/0.4- 0.5	BH5/0.9- 1.0	BH6/0.05- 0.15	BH6/0.4- 0.5
	Aldrin	10	40	20	50	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
	Dieldrin					-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
	Endrin	-	-	-	-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
	Endrin Aldehyde	-	-	-	-	-	-	< 0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
	Endrin Ketone	-	-	-	-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
ଜ	4,4'-DDD		000	400	4000	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
(OCPs	4,4'-DDE	200	800	400	1000	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
Ó.	4,4'-DDT		-		-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
ides	α-BHC β-BHC	_	-	-	-	-	-	<0.05 <0.05	-	-	<0.05 <0.05	-	-	-	-	-	-	<0.05 <0.05	-	-	-	-
stic	β-BHC γ-BHC (Lindane)	-	-	-	-	-	-	<0.05			<0.05		-					<0.05				
æ	γ-BHC (Lindane) δ-BHC	-	_	-	-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
ij.	Endosulfan I		-	-		-	1	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
읉	Endosulfan II	-	-	-	-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
2	Endosulfan Sulphate	-	-	-	-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
Orga	Heptachlor	10	40	20	50	-		<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
0	Heptachlor Epoxide	-	-	-	-	-	-	<0.05	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-	-	-
	Hexachlorobenzene	-	-	-	_	-		<0.05	_	-	<0.05	-	_	-	-	-	-	<0.05	-	-	-	-
	Methoxychlor	_	_	_	_	_	-	<0.05	_	-	<0.05	_	_	_	_	_	_	<0.05	_	_	_	_
	Toxaphene	_	_	_	_	_	-	<0.05	_	-	<0.05	-	_	-	-	-	-	<0.05	-	-	-	_
	Chlordane	50	200	100	250	_	_	<0.05	-	-	<0.05	-	_	-	_	-	-	<0.05	-	-	-	_
	Organochlorine Pesticides	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S	Chloryyrifos	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
çiğ	Diazinon	-	-	-	-	-	-	<0.5	-	-	<0.5		-	-	-	-	-	<0.5	-	-	-	-
esti	Duchlorvos	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
us P	Ethion	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
sphoru (OPPs	Fenthion	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
₽ <u>0</u>	Malathion	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
pho	Mevinphos	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
ano	Parathion Ronnel (Fenchlorfos)	-	-	-	-	-	-	<0.5 <0.5	-	-	<0.5 <0.5	-	-	-	-	-	-	<0.5 <0.5	-	-	-	-
Org	Stirofos				-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
	24 Dichlorophenoxy			-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	_	-
Herbi- cides	245 Trichlorphenoxy	-	-	-	-	-	_	<0.5	-	-	<0.5	-	_	-	-	-	-	<0.5	-	-	-	-
žΰ	2-Methyl-4-Chlorophe	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
	Ametryn	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
	Atrazine	-	-	-	-	-	-	<0.5	-	-	<0.5	•	-	-	-	-	-	<0.5	-	-	-	-
	Prometon	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
nes	Prometryn	-	-	-	-	-	-	<0.5	-	-	<0.5	•	-	-		-	-	<0.5	-	-	-	-
iazi	Propazine	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
Ė	Simazine	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
	Simetryn	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
	Terbuthylazine	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-
	Terbutryn	-	-	-	-	-	-	<0.5	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-	-	-

Human exposure settings based on land use established for:

- 1. 'Standard' residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit intake; no poultry): this category includes children's day-care centres, kindergartens, preschools and primary schools.
- 2. Residential with minimal opportunities for soil access: includes dwellings with fully and permanently paved yard such as high-rise apartments and flats.
- 3. Parks, recreational open space and playing fields: includes secondary schools.
- 4. Commercial/Industrial: includes premises such as shops and offices as well as factories and industrial sites.
- 5. Interim EILs for the urban setting are based on considerations of phytotoxicity, ANZECC B levels, and soil survey data from urban residential properties in four Australian capital cities.
- For protection of built structures.
- : Denotes no data available.
- $g, i \ \& \ k : Threshold \ concentration \ (Netherlands \ Maximum \ Permissible \ Concentration) \ for \ protection \ of \ terrestrial \ organisms \ (ref. \ 6).$
- h & j : Human health (and ecologically) based protection levels, from the Netherlands intervention value (ref. 6).
- 123 Bold font denotes reported concentration exceeded the adopted provisional phytotoxicity-based investigation levels (ref. 2).

 123 Bold and shaded font denotes reported concentration exceeded the adopted health-based investigation levels for 'A' Standard residential (ref. 2).

			Site Aud	ditor Scheme	e (2nd edition for urban dev	nes for the NSW n) relopment sites in	NSW EPA Service station sites (ref. 6)										Borehole	Locations					
		Health-	-based invest	igation levels	(mg/kg)	Provisional phytotoxicity-	Table 3 of Service Station Sites:	В	BH7	В	Н8	В	H9		BH10		ВН	H11	BF	·112		BH13	
	Analytes mg/kg unless stated	A ¹	D ²	E ³	F⁴	based investigation levels ⁵ (mg/kg)	Assessment and Remediation Guideline Levels	BH7/0.05- 0.15	BH7/0.5- 0.6	BH8/0.0- 0.1	BH8/0.4- 0.5	BH9/0.05- 0.15	BH9/0.4- 0.5	BH10/0.05- 0.15	BH10/0.4- 0.5	BH10/0.9- 1.0	BH11/0.05- 0.15	BH11/0.4- 0.5	BH12/0.1- 0.2	BH12/0.4- 0.5	BH13/0.05- 0.15	BH13/0.4- 0.5	BH13/0.8- 0.9
	Sample Date	-	-	-	-	-	-	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	13/1/2010	12/1/2010	12/1/2010	13/1/2010	13/1/2010	13/1/2010
ons	Laboratory	-	-		-	-	-	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise
ripti	Laboratory Report Number	-	-	-	-	-	-	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693	139693
Desc	Laboratory Sample ID Assumed Depth Interval (m)	-	-	-	-	-	-	2056264 0.05-0.15	2056265 0.5-0.6	2056261 0.0-0.1	2056262 0.4-0.5	2056289 0.05-0.15	2056290 0.4-0.5	2056286 0.05-0.15	2056287 0.4-0.5	2056288 0.9-1.0	2056258 0.05-0.15	2056259 0.4-0.5	2056242 0.1-0.2	2056243 0.4-0.5	2056255 0.05-0.15	2056256 0.4-0.5	2056257 0.8-0.9
ble I	Sample Type	-	-	-	-	-	-	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Sam	QA Sample	-	-	-	-	-	-	Dup 2	-	-	-	Dup 4	-	-	-	-	-	-	-	-	-	-	-
•	PID (ppm)	-	-	-	-	-	-	51.1	5.1	32.0	24.2	0	0.6	0	0	0.3	15	15.9	0.7	0.4	9.3	10.9	10.5
	pH (units)	-	-	-	-	-	-	4.8	5.1	5.2	4.1	5.1	4.9	5.3	5.2	4.8	4.6	5.7	6.2	6	4.8	4.6	5
	Aluminium (Al)	-	-	-	-	-	-	110	21	50	89	180	50	200	77	260	120	23	3200	270	110	87	25
	Antimony (Sb) Arsenic (As) (total)	100	400	200	500	20	-	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Barium (Ba)	-	-	-	-	-	-	<5	<5	<5	8	<5	<5	<5	<5	<5	<5	<5	23	<5 <5	<5	<5	<5
	Beryllium (Be)	20	80	40	100	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Boron (B)	-	-	-	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	<10	<10	<10	<10
	Cadmium (Cd) Total Chromium (Cr)	20	80	40	100	3	-	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5
	Cobalt (Co)	100	400	200	500	-	-	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
<u>s</u>	Copper (Cu)	1000	4000	2000	5000	100	-	<5	7	<5	<5	<5	<5	<5	<5	8	<5	<5	8	<5 <5	<5	<5	<5
Meta	Iron (Fe)	-	-	-	-	-	-	110	11	50	49	250	56	170	210	1000	160	26	6600	340	180	55	25
/sɔ	Lead (Pb)	300	1200	600	1500	600	300	<5	<5	<5	<5	<5	<5	<5	<5	28	<5	<5	28	<5	<5	<5	<5
jani	Manganese (Mn)	1500 15	6000 30	3000	7500 75	500	-	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	<5 <0.05	120 <0.05	6 <0.05	<5 <0.05	<5 <0.05	<5 <0.05
JO.	Mercury (Hg) (total) Molybdenum (Mo)	- 15	- 30	- 30	- 75	-	-	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05 <5	<0.05
_	Nickel (Ni)	600	2400	600	3000	60	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Selenium (Se)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Silver (Ag)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Strontium (Sr) Thallium (TI)	-	-	-	-	-	-	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	6 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Tin (Sn)	-	-	-	-	-	-	<5	<5	<5 <5	<5 <5	<5 <5	<5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5	<5 <5
	Titanium (Ti)	-	-	-	-	-	-	<5	<5	<5	<5	8	6	<5	<5	15	6	8	84	17	<5	<5	<5
	Vanadium (V)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	13	<5	<5	<5	<5
	Zinc (Zn)	7000	28000	14000	35000	200	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	17	<5	<5	<5	<5
	Acceptables	-	-	-	-	-	-	-	-	<0.1 <0.1	-	<0.1 <0.1	<0.1 <0.1	-		-	-	-	<0.1 0.1	<0.1 <0.1	-	-	-
	Acenapthylene Anthracene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	<0.1	<0.1	-	-	-
ŝ	Benzo(a) Anthracene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.2	<0.1	-	-	-
PAHS)	Benzo(a) Pyrene	1	4	2	5	-	1		-	<0.1		<0.1	<0.1		-	-			0.2	<0.1		-	<u> </u>
ns (F	Benzo(b) Fluoranthene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.6	<0.1	-	-	-
irbo	Benzo(g,h,i) perylene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.7	<0.1	-	-	-
roca	Benzo(k) Fluoranthene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.6	<0.1	-	-	-
Нуф	Chrysene Dibenzo(a,h) Anthracene	-	-	-	-	-	-	-	-	<0.1 <0.1	-	<0.1 <0.1	<0.1 <0.1	-	-	-	-	-	0.3	<0.1 <0.1	-	-	-
atic	Fluoranthene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.2	<0.1	-	-	-
Ď E	Fluorene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	<0.1	<0.1	-	-	-
olyaı	Indeno (1,2,3-c,d) Pyrene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.6	<0.1	-	-	-
ď	Naphthalene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	<0.1	<0.1	-	-	-
	Phenanthrene	-	-	-	-	-	-	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	0.1	<0.1	-	-	-
	Pyrene PAH (Total)	20	- 80	40	100	-	20	-	-	<0.1 <0.1	-	<0.1 <0.1	<0.1 <0.1	-	-	-	-	-	0.3 4.2	<0.1 <0.1	-	-	-
	Benzene	-	-	-	-	-	1	-	-	<0.1	-	<0.1	<0.1	-	-	-	-	-	<0.5	<0.1	-	-	-
clic sons	Toluene	-	-	-	-	-	1.4 ^g /130 ^h	-	-	<0.5	-	<0.5	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-
ocy mat cart	Ethyl Benzene	-	-	-	-	-	3.1 ⁱ /50 ^j	-	-	<0.5	-	<0.5	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-
Monocyclic Aromatic Hydrocarbon (MAHs)	Xylene	-	-	-	-	-	14 ^k /25 ^j	-	-	<0.5	-	<0.5	<0.5	-	-	-	-	-	<0.5	<0.5	-	-	-
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
· · · ·	C6-C9	-	-	-	-	-	65	-	-	<20	-	<20	<20	-	-	-	-	-	<20	<20	-	-	-
용류	C10.C14	_	-	-	-	-		-	-	<20	-	<20	<20	-	-	-	-	-	<20	<20	-	-	-
tal erable arbon Hs)	C10-C14																						
Total Recoverable Hydrocarbons (TRHs)	C15-C28	-	-	-	-	-	1000	-	-	<50	-	<50	<50	-	-	-	-	-	<50	<50	-	-	-

			Site Audi	itor Scheme	e (2nd edition for urban dev	es for the NSW i) elopment sites in	NSW EPA Service station sites (ref. 6)										Borehole	Locations					
		Health-	-based investiç	gation levels	(mg/kg)	Provisional phytotoxicity-	Table 3 of Service Station Sites:	В	H7	В	BH8	Bł	H9		BH10		ВІ	- 111	ВІ	H12		BH13	
	Analytes mg/kg unless stated	A ¹	D ²	E ³	F ⁴	based investigation levels ⁵ (mg/kg)	Assessment and Remediation Guideline Levels	BH7/0.05- 0.15	BH7/0.5- 0.6	BH8/0.0- 0.1	BH8/0.4- 0.5	BH9/0.05- 0.15	BH9/0.4- 0.5	BH10/0.05- 0.15	BH10/0.4- 0.5	BH10/0.9- 1.0	BH11/0.05- 0.15	BH11/0.4- 0.5	BH12/0.1- 0.2	BH12/0.4- 0.5	BH13/0.05- 0.15	BH13/0.4- 0.5	BH13/0.8- 0.9
	Aldrin	10	40	00	50	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
	Dieldrin	10	40	20	30	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	< 0.05	-	-
	Endrin	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
	Endrin Aldehyde	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
	Endrin Ketone	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
	4,4'-DDD					-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
Ps)	4,4'-DDE	200	800	400	1000	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	< 0.05	-	-
(OCP	4,4'-DDT					-	-	-	-	-	-	-		<0.05		-	-	-	-	-	< 0.05	1	-
	α-BHC	-	-	-	-	_	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
sticides	β-BHC	_	_	-	_	-	_	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-	< 0.05	-	-
	γ–BHC (Lindane)	_	_	-	_	-	_	_	-	-	-	-		<0.05	-	-	-	-	_	-	< 0.05	_	-
e G	δ-BHC	_	_	_	_	_	_	_	-	-	-	-		<0.05	-	-	-	-	_	-	< 0.05	_	-
Ę	Endosulfan I	-	-	-	_	-	_	_	_	_	-	-	-	<0.05	-	_	-	-	-	-	<0.05	_	_
붉	Endosulfan II	_	_	_	_	_	_	_	_	_	_	-		<0.05	_	_	_	_	_	-	<0.05	-	_
ĕ	Endosulfan Sulphate	-	-	_	-	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-
rga	Heptachlor	10	40	20	50	_					_	-		<0.05		_				-	<0.05	_	-
ō	Heptachlor Epoxide	- 10	-	20	-	-	1		-		-	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-
	Hexachlorobenzene		-	-	-	-	-									-		-		-			-
	Methoxychlor	-		-	-	-		-	-	-	-	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-
	•	_	-	-			-					+		<0.05 <0.05						+	<0.05		
	Toxaphene	-	-	- 100	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	<0.05	-	-
	Chlordane	50	200	100	250	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-	<0.05	-	-
	Organochlorine Pesticides	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
des	Chloryyrifos	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	•	-	-	-	-	-	<0.5	-	-
Ė	Diazinon	-	-	-	-	-	-	-	-	-	-	-	-	<0.5 <0.5	•	-	-	-	-	-	<0.5 <0.5	-	-
Pes	Duchlorvos	-	-	-	-	-	•	-	-	-	-	-	-		-	-	-	-	-	-	<0.5	-	-
sn (s	Ethion	-	-	-	-	-	-	-	-	-	-	-	-	<0.5 <0.5	-	-	-	-	-		<0.5	-	-
phor (OPP)	Fenthion	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-		<0.5	-	-
dso O	Malathion Mevinphos	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
ų d	Parathion	-	-	-	-	-	-			-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
au	Ronnel (Fenchlorfos)	-	-	-	+ -	-	 			-	-	-	-	<0.5	-	-	-	 		-	<0.5	-	-
Org	Stirofos	-	-		-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
	24 Dichlorophenoxy	-				-		-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
Herbi- cides	245 Trichlorphenoxy	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
윤형	2-Methyl-4-Chlorophe	+ -	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
	Ametryn		-	_		-	-	-	_	_	-	-		<0.5		-	-	-	-	-	<0.5	-	-
	Atrazine	-	-	-	-	-	-	-	-		-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
	Prometon	+ :		-	-	-	-	-		-	-	-	-	<0.5	-	-		-	-	-	<0.5	-	-
S.	Prometryn	-	-			-		-	-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
zi	Propazine	+ -	-		-	-	-		-	-	-	-	-	<0.5	-	-	-	-	-	-	<0.5	-	-
Ţ.	Simazine	-	-	_		-	-	_	_	_	-	-		<0.5		-	-	-	-	-	<0.5	-	-
	Simetryn	-	-	_		-	-	_	_	_	-	-		<0.5		-	-	-	-	-	<0.5	-	-
	Terbuthylazine	-	-	_		-	-	_	-	_	-	-		<0.5		-	-	-	-	-	<0.5	-	-
	Terbutryn	+ -	_	_	_	_		_	_	_	_	_		<0.5	_	_	_		_	-	<0.5		_
			_				_						_	∖ 0.5		_					~ 0.0		

Human exposure settings based on land use established for:

- 1. 'Standard' residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit intake; no poultry): this category includes children's day-care centre:
- 2. Residential with minimal opportunities for soil access: includes dwellings with fully and permanently paved yard such as high-rise apartments and flats.
- 3. Parks, recreational open space and playing fields: includes secondary schools.
- 4. Commercial/Industrial: includes premises such as shops and offices as well as factories and industrial sites.
- 5. Interim EILs for the urban setting are based on considerations of phytotoxicity, ANZECC B levels, and soil survey data from urban residential properties in four Australian capital cities.
- For protection of built structures.
- : Denotes no data available.
- $g, i \ \& \ k : Threshold \ concentration \ (Netherlands \ Maximum \ Permissible \ Concentration) \ for \ protection \ of \ terrestrial \ organisms \ (ref. \ 6).$
- h & j : Human health (and ecologically) based protection levels, from the Netherlands intervention value (ref. 6).
- Bold font denotes reported concentration exceeded the adopted provisional phytotoxicity-based investigation levels (ref. 2).

 Bold and shaded font denotes reported concentration exceeded the adopted health-based investigation levels for 'A' Standard residential (ref. 2).

			Site Aud	itor Scheme	<i>(2nd editior</i> or urban dev	nes for the NSW n) elopment sites in	NSW EPA Service station sites (ref. 6)					Bor	ehole Locati	ions		
		Health-l	based investi	gation levels	(mg/kg)	Provisional phytotoxicity-	Table 3 of Service Station Sites:	ВН	114	ВН	115		BH16		(Target)) Surface
	Analytes mg/kg unless stated	A ¹	D ²	E ³	F ⁴	based investigation levels ⁵ (mg/kg)	Assessment and Remediation Guideline Levels	BH14/0.1- 0.2	BH14/0.4- 0.5	BH15/0.1- 0.2	BH15/0.6- 0.7	BH16/0.05- 0.15	BH16/0.5- 0.6	BH16/0.9- 1.0	Surface 1	Surface 2
	Sample Date	-	-	-	-	-	-	12/1/2010	12/1/2010	12/1/2010	12/1/2010	12/1/2010	12/1/2010	12/1/2010	13/1/2010	13/01/2010
Descriptions	Laboratory	-	-	-	-	-	-	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise	Ecowise
rio tr	Laboratory Report Number	-	-	-	-	-	-	139693	139693	139693	139693	139693	139693	139693	139693	139693
ose	Laboratory Sample ID	-	-	-	-	-	-	2056251	2056252	2056245	2056246	2056248	2056249	2056250	2056292	2056293
96	Assumed Depth Interval (m)	-	-	-	-	-	-	0.1-0.2 Soil	0.4-0.5	0.1-0.2	0.6-0.7	0.05-0.15	0.5-0.6	0.9-1.0	Surface	0.1-0.2
Sample	Sample Type QA Sample	-	-	-	-	-	-	5011	Soil -	Soil	Soil	Soil Dup 1	Soil -	Soil -	Tar -	Soil -
Ø	PID (ppm)	-	-	-	-	-	-	2.4	0.9	10.1	11.7	1.1	0.6	0.2	25.2	9.1
	pH (units)	-	-	-	-	-	-	4.3	4.7	4.7	5.2	4.2	5.1	5.5	-	-
	Aluminium (AI)	-	-	-	-	-	-	210	30	140	83	210	65	68	1200	9100
	Antimony (Sb)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Arsenic (As) (total)	100	400	200	500	20	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Barium (Ba)	-	-	- 40	-	-	-	<5 -	<5 -	<5 -	<5 -	5	<5 -	<5 -	<5 -	84
	Beryllium (Be) Boron (B)	20 -	80	40	100	-	-	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10
	Cadmium (Cd)	20	80	40	100	3	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Total Chromium (Cr)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	8
	Cobalt (Co)	100	400	200	500	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
la s	Copper (Cu)	1000	4000	2000	5000	100	-	<5	<5	<5	<5	<5	<5	<5	<5	11
<u>B</u>	Iron (Fe)	-	-	-	-	-	-	200	22	100	310	260	210	250	2500	31000
Inorganics / Metals	Lead (Pb) Manganese (Mn)	300 1500	1200 6000	600 3000	1500 7500	600 500	300	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 60	10 150
gan	Mercury (Hg) (total)	1500	30	30	75	1	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
<u>교</u>	Molybdenum (Mo)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
_	Nickel (Ni)	600	2400	600	3000	60	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Selenium (Se)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Silver (Ag)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
	Strontium (Sr)	-	-	-	-	-	-	<5 -	<5 -	<5 -	<5 -	6	<5 -	<5 <5	30	6
	Thallium (TI) Tin (Sn)	-	-	-	-	-	-	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
	Titanium (Ti)	-	-	-	-	-	-	<5	<5	<5	6	<5 <5	7	7	18	44
	Vanadium (V)	-	-	-	-	-	-	<5	<5	<5	<5	<5	<5	<5	<5	44
	Zinc (Zn)	7000	28000	14000	35000	200	-	<5	<5	<5	<5	<5	<5	<5	7	34
	Acenaphthene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	<0.3
	Acenapthylene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	0.6
	Anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	0.7
(Hs)	Benzo(a) Anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	2.8
ď.	Benzo(a) Pyrene Benzo(b) Fluoranthene	1 -	4	2	5	-	-	-	-	-	-	-	-	-	<3 <3	3.3 7.9
ons	Benzo(g,h,i) perylene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	9.9
carb	Benzo(k) Fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	7.9
<u>o</u> p	Chrysene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	4.4
Ť	Dibenzo(a,h) Anthracene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	2.3
Polyaromatic Hydrocarbons (PAHs)	Fluoranthene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	4.1
aron	Fluorene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	<0.3
olya	Indeno (1,2,3-c,d) Pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3	8.6
	Naphthalene	-	-	-	-	-	-	-	-	-	-	-	-	-	41	0.4
	Phenanthrene Pyrene	-	-	-	-	-	-	-	-	-	-	-	-	-	<3 <3	1.6 3.7
	PAH (Total)	20	- 80	40	100	-	20	-	-	-	-	-	-	-	<3 41	58
	Benzene	-	-	-	-	-	1	-	-	-	-	-	-	-	<0.5	<0.5
Monocyclic Aromatic Hydrocarbons (MAHs)	Toluene	-	-	-	-	-	1.4 ⁹ / 130 ^h	-	-	-	-	-	-	-	2.6	<0.5
ocyc mat cark AHs	Ethyl Benzene	-	-	-	-	-	3.1 ⁱ /50 ^j	-	-	-	-	-	-	-	1.6	<0.5
Aro Aro (M.	Xylene	-	-	-	-	-	14 ^k / 25 ^j	-	-	-	-	-	-	-	18	<0.5
	Monocyclic aromatic hydrocarbons	-	-	-	-	-	-	-	-	-	-	-	-	-		
ns ns	C6-C9	-	-	-	-	-	65	-	-	-	-	-	-	-	<100	<20
Total Recoverable Hydrocarbons (TRHs)	C10-C14	-	-	-	-	-		-	-	-	-	-	-	-	1600	41
Tot 20 ve Toca TRF	C15-C28	-	-	-	-	_	1000	-	-	-	-	-	-	-	<300	73
Hec Hyd	C29-C36	_	-	_	-	-		-	_	_	_	_	_	_	2200	220
1 -	177	!	<u> </u>	<u> </u>	<u>!</u>	I				<u>!</u>	<u> </u>	<u>!</u>		<u> </u>		1

			Site Audi	itor Scheme	<i>(2nd editior</i> or urban dev	es for the NSW n) elopment sites in	NSW EPA Service station sites (ref. 6)					Bor	ehole Locat	ions		
		Health-l	based investi	gation levels	(mg/kg)	Provisional phytotoxicity-	Table 3 of Service Station Sites:	ВН	114	Bŀ	115		BH16		(Target)) Surface
	Analytes mg/kg unless stated	A ¹	D ²	E ³	F⁴	based investigation levels ⁵ (mg/kg)	Assessment and Remediation Guideline Levels	BH14/0.1- 0.2	BH14/0.4- 0.5	BH15/0.1- 0.2	BH15/0.6- 0.7	BH16/0.05- 0.15	BH16/0.5- 0.6	BH16/0.9- 1.0	Surface 1	Surface 2
	Aldrin	10	40	00	50	-	-	-	-	< 0.05	-	-	-	-	-	-
	Dieldrin	10	40	20	30	-	-	-	-	< 0.05	-	-	-	-	-	-
	Endrin	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-
	Endrin Aldehyde	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-
	Endrin Ketone	-	-	-	-	-	-	-	-	< 0.05	-	-	-	-	-	-
	4,4'-DDD					-	-	-	-	< 0.05	-	-	-	-	-	-
ŝ	4,4'-DDE	200	800	400	1000	-	-	-	-	<0.05	-	-	-	_	-	-
Š	4,4'-DDT	1				_	-	-	_	<0.05	-	-	_	-	-	_
Pesticides (OCPs)	α-BHC	_	_	_	_	_	_	_	-	<0.05	_	-	-	_	_	-
β	β-BHC	_	_	_	_	_	_	_	_	<0.05	-	_	_	_	_	_
Stic	γ-BHC (Lindane)	_	_	_	_	_	_	-	-	<0.05	-	-	-	-	-	-
P _B	δ-BHC	_	_		_		_		_	<0.05	-	-	_	-		
Organochlorine	Endosulfan I	-	-	-	-	_	-	-	-	<0.05	-	-	-	-	-	-
얼		-	-	-	-	-	-		-	<0.05		-	-	-	-	-
ည	Endosulfan II															
īga	Endosulfan Sulphate	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-
ō	Heptachlor	10	40	20	50	-	-	-	-	<0.05	-	-	-	-	-	-
	Heptachlor Epoxide	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-
	Hexachlorobenzene	-	-	-	-	-		-	-	<0.05	-	-	-	-	-	-
	Methoxychlor	-	-	-	-	-	-	-	-	<0.05	-	-	-	-	-	-
	Toxaphene	-	-	-	-	-	-		-	<0.05	-	-	-	-	-	-
	Chlordane	50	200	100	250	-	-	-	-	<0.05	-	-	-	-	-	-
	Organochlorine Pesticides	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
es	Chloryyrifos	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
i i	Diazinon	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
est	Duchlorvos	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
Organophosphorus Pesticides (OPPs)	Ethion	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
PPs	Fenthion	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
رة <u>ق</u>	Malathion	-	-	-	-	-		-	-	<0.5	-	-	-	-	-	-
o _k d	Mevinphos	-	-	-	-	-		-	-	<0.5	-	-	-	-	-	-
o d	Parathion	-	-	-	-	-		-	-	<0.5	-	-	-	-	-	-
Jrga	Ronnel (Fenchlorfos)	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	Stirofos	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
. <u>†</u> 8	24 Dichlorophenoxy	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
Herbi- cides	245 Trichlorphenoxy	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	2-Methyl-4-Chlorophe	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	Ametryn	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
I	Atrazine	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	Prometon	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
Triazines	Prometryn	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
iazi	Propazine	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
i i	Simazine	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	Simetryn	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	Terbuthylazine	-	-	-	-	-	-	-	-	<0.5	-	-	-	-	-	-
	Terbutryn	-	-	-	-	-	-	ı	-	< 0.5	-	-	-	-	-	-

Human exposure settings based on land use established for:

- 1. 'Standard' residential with garden/accessible soil (home-grown produce contributing less than 10% of vegetable and fruit intake; no poultry): this category includes children's day-care centre:
- 2. Residential with minimal opportunities for soil access: includes dwellings with fully and permanently paved yard such as high-rise apartments and flats.
- 3. Parks, recreational open space and playing fields: includes secondary schools.
- 4. Commercial/Industrial: includes premises such as shops and offices as well as factories and industrial sites.
- 5. Interim EILs for the urban setting are based on considerations of phytotoxicity, ANZECC B levels, and soil survey data from urban residential properties in four Australian capital cities.
- For protection of built structures.
- : Denotes no data available.
- $g, i \ \& \ k : Threshold \ concentration \ (Netherlands \ Maximum \ Permissible \ Concentration) \ for \ protection \ of \ terrestrial \ organisms \ (ref. \ 6).$
- h & j : Human health (and ecologically) based protection levels, from the Netherlands intervention value (ref. 6).
- 123 Bold font denotes reported concentration exceeded the adopted provisional phytotoxicity-based investigation levels (ref. 2).

 123 Bold and shaded font denotes reported concentration exceeded the adopted health-based investigation levels for 'A' Standard residential (ref. 2).

Coastal Hazard and Flood Study (LANDCOM)
Table 2 - Relative Percentage Differences (mg/kg) Project: Subject:

						Rela	ative Percenta	ge Differences	s (%)				
			BH1			ВН7			ВН9			BH16	
	Analytes mg/kg unless stated	BH1/0.05- 0.15	Dup 3	RPD %	BH7/0.05- 0.15	Dup 2	RPD %	BH9/0.05- 0.15	Dup 4	RPD %	BH16/0.05- 0.15	Dup 1	RPD %
suc	Sample Date Laboratory	13/1/2010 Ecowise	13/1/2010 Ecowise		13/1/2010 Ecowise	13/1/2010 MGT		13/1/2010 Ecowise	13/1/2010 MGT		12/1/2010 Ecowise	12/1/2010 Ecowise	
escriptions	Laboratory Report Number	139693	139693		139693	258085-V1		139693	258085-V1		139693	139693	
Sample Do	Laboratory Sample ID	2056276	2056295		2056264	M10-JA03597		2056289	M10-JA03598		2056248	2056254	
ග	Assumed Depth Interval (m) Sample Type	0.05-0.15 Soil	0.05-0.15 Soil		0.05-0.15 Soil	0.05-0.15 Soil		0.05-0.15 Soil	0.05-0.15 Soil		0.05-0.15 Soil	0.05-0.15 Soil	
	pH (units) Aluminium (Al)	4.7 140	4.8 130	2% 7%	4.8 110	4.4	9% na	5.1 180	5.1	0 na	4.2 210	4.4 210	5% 0%
	Antimony (Sb)	<5	<5	na	<5	-	na	<5	-	na	<5	<5	na
	Arsenic (As) (total) Barium (Ba)	<5 7	<5 <5	na na	<5 <5	<2 -	na na	<5 <5	<2 -	na na	<5 5	<5 <5	na na
	Beryllium (Be) Boron (B)	<5 <10	<5 <10	na na	<5 <10	-	na na	<5 <10	-	na na	<5 <10	<5 <10	na na
	Cadmium (Cd) Total Chromium (Cr)	<0.2 <5	<0.2 <5	na na	<0.2 <5	<0.5 <5	na na	<0.2 <5	<0.5 <5	na na	<0.2 <5	<0.2 <5	na na
ø	Cobalt (Co)	<5	<5	na	<5	-	na	<5	-	na	<5	<5	na
Metal	Copper (Cu) Iron (Fe)	<5 150	<5 260	na 54 %	<5 110	<5 -	na na	<5 250	<5 -	na na	<5 260	<5 140	na 60 %
nics /	Lead (Pb) Manganese (Mn)	<5 <5	<5 <5	na na	<5 <5	<5 -	na na	<5 <5	<5 -	na na	<5 <5	<5 <5	na na
Inorga	Mercury (Hg) (total) Molybdenum (Mo)	<0.05 <5	<0.05 <5	na na	<0.05 <5	<0.1 <10	na na	<0.05 <5	<0.1 <10	na na	<0.05 <5	<0.05 <5	na na
_	Nickel (Ni) Selenium (Se)	<5	<5	na	<5	<5	na	<5	<5	na	<5	<5	na
	Silver (Ag)	<5 <5	<5 <5	na na	<5 <5	<2 <5	na na	<5 <5	<2 <5	na na	<5 <5	<5 <5	na na
	Strontium (Sr) Thallium (TI)	8 <5	6 <5	29% na	<5 <5	-	na na	<5 <5	-	na na	6 <5	<5 <5	na na
	Tin (Sn) Titanium (Ti)	<5 <5	<5 <5	na na	<5 <5	<10 -	na na	<5 8	<10	na na	<5 <5	<5 6	na na
	Vanadium (V)	<5	<5	na	<5	-	na	<5	-	na	<5	<5	na
	Zinc (Zn) Acenaphthene	<5 <0.1	6 <0.1	na na	<5 -	<5 -	na -	<5 <0.1	<5 <0.1	na na	<5 -	<5 -	na -
	Acenapthylene Anthracene	<0.1 <0.1	<0.1 <0.1	na na	-	-	-	<0.1 <0.1	<0.1 <0.1	na na	-	-	-
AHs)	Benzo(a) Anthracene Benzo(a) Pyrene	<0.1	<0.1	na na	-	-	-	<0.1	<0.1	na na	-	-	-
ns (PAHs)	Benzo(b) Fluoranthene	<0.1	<0.1	na	-	-	-	<0.1	<0.1	na	-	-	-
carbo	Benzo(g,h,i) perylene Benzo(k) Fluoranthene	<0.1 <0.1	<0.1 <0.1	na na	-	-	-	<0.1 <0.1	<0.1 <0.1	na na	-	-	-
Hydro	Chrysene	<0.1	<0.1	na	-	-	-	<0.1	<0.1	na	-	-	-
natic I	Dibenzo(a,h) Anthracene Fluoranthene	<0.1 <0.1	<0.1 <0.1	na na	-	-	-	<0.1 <0.1	<0.1 <0.1	na na	-	-	-
Polyaror	Fluorene Indeno (1,2,3-c,d) Pyrene	<0.1 <0.1	<0.1 <0.1	na na	-	-	-	<0.1 <0.1	<0.1 <0.1	na na	-	-	-
8	Naphthalene	<0.1	<0.1	na	-	-	-	<0.1	<0.1	na	-	-	-
	Phenanthrene Pyrene	<0.1 <0.1	<0.1 <0.1	na na	-	-	-	<0.1 <0.1	<0.1 <0.1	na na	-	-	-
iS	PAH (Total) Benzene	<0.1 <0.5	<0.1 <0.5	na na	-	-	-	<0.1 <0.5	<0.1 <0.05	na na	-	-	-
romat oons)	Toluene	<0.5	<0.5	na	-	-	-	<0.5	<0.05	na	-	-	-
clic A rocarb MAHS	Ethyl Benzene	<0.5	<0.5	na	-	-	-	<0.5	<0.05	na	-	-	-
Monocyclic Aromatic Hydrocarbons (MAHs)	Xylene	<0.5	<0.5	na	-	-	-	<0.5	<0.05	na	-	-	-
N N	Monocyclic aromatic hydrocarbons C6-C9	- <20	- <20	- na	-	-	-	- <20	- <20	na	-	-	-
Total Recoverable Hydrocarbons (TRHs)	C10-C14	<20	<20	na	-	-	-	<20	<50	na	-	-	-
Il Reco	C15-C28	<50	<50	na	-	-	-	<50	<100	na	-	=	=
Tota J.	C29-C36	<50	<50	na	-	-	=	<50	<100	na	-	=	=
	Aldrin Dieldrin	<0.05 <0.05	<0.05 <0.05	na na	-	-	-	-	-	-	-	-	-
	Endrin	<0.05	<0.05	na	-	-	-	-	-	-	-	-	-
	Endrin Aldehyde Endrin Ketone	<0.05 <0.05	<0.05 <0.05	na na	-	-	-	-	-	-	-	-	-
(s _c	4,4'-DDD 4,4'-DDE	<0.05 <0.05	<0.05 <0.05	na na	-	-	-	-	-	-	-	-	-
s (OCPs)	4,4'-DDT	<0.05	<0.05	na	-	-	-	-	-	-	-	-	-
Pesticides	a-BHC b-BHC	<0.05 <0.05	<0.05 <0.05	na na	-	-	-	-	-	-	-	-	-
<u>ə</u>	g-BHC (Lindane) d-BHC	<0.05 <0.05	<0.05 <0.05	na na	-	-	-	-	-	-	-		-
chlorin	Endosulfan I Endosulfan II	<0.05 <0.05	<0.05 <0.05	na	-	-	-	-	-	-	-	-	-
Organoch	Endosulfan Sulphate	<0.05	<0.05	na na	-	-	-	-	-		-	-	-
ō	Heptachlor Heptachlor Epoxide	<0.05 <0.05	<0.05 <0.05	na na	-	-	-	-	-	-	-	-	-
	Hexachlorobenzene	<0.05 <0.05	<0.05 <0.05	na	-	-	-	-	-	-	-	-	-
	Methoxychlor Toxaphene	<0.05	<0.05	na na	-	-	-	-	-	-	-	-	-
L	Chlordane Organochlorine Pesticides	<0.05	<0.05	na -	-	-	-	-	-	-	-	-	-
ides	Chloryyrifos Diazinon	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
Pesticides	Duchlorvos	<0.5	<0.5	na	-	-	-	-	-	-	-	-	÷
osphorus F (OPPs)	Ethion Fenthion	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
hosph (OP	Malathion Mevinphos	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
yanopk	Parathion	<0.5 <0.5	<0.5 <0.5	na	-	-	-	-	-	-	-	-	-
Organ	Ronnel (Fenchlorfos) Stirofos	<0.5	<0.5	na na	-	-	-	-	-	-	-	-	-
Herbicide	24 Dichlorophenoxy 245 Trichlorphenoxy	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
<u></u>	2-Methyl-4-Chlorophe Ametryn	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
	Atrazine	<0.5	<0.5	na	-	-	=	-	-	=	-	-	-
nes	Prometryn	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
Triazines	Propazine Simazine	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
]	Simetryn Terbuthylazine	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-
	Terbutryn Terbutryn	<0.5 <0.5	<0.5 <0.5	na na	-	-	-	-	-	-	-	-	-

na : not applicable

123 : Denotes calculated Relative Percentage Difference (%) above 50%.

ABN - 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Company Name: Address: Worley Parsons Melbourne Level 12, 333 Collins Stree Melbourne VIC 3000

Order No.: Report #: Phone: 258085 8676 3500 8676 3505 Fax:

Jan 15, 2010 12:00 Jan 22, 2010 09:02 Received:

Due: Priority: Contact name: 5 Day June Lee

PRELIMINARY ENVIRONMENTAL SITE Client Job No.:

ASSESSMENT

mgt Client Manager: Andrew Thexton

	Sá	ample Detail			% Moisture	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract)	Selenium	Silver	Tin	Zinc	Monocyclic Aromatic Hydrocarbons	Polycyclic Aromatic Hydrocarbons	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is co	nducted																			
Melbourne Lab	oratory - NATA S	ite #1254			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	#18217																			
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
DUP 2	Jan 13, 2010		Soil	M10-JA03597	Х	х	Х	Х	х	Х	Х	х	х	Х	х	Х	Х	х			
DUP 4	Jan 13, 2010		Soil	M10-JA03598	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web : www.matenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Sample Receipt Advice

Company name: Worley Parsons Melbourne

Contact name: June Lee

Client job number: PRELIMINARY ENVIRONMENTAL SITE ASSESSMENT

COC number: Not provided

Turn around time: 5 Day

Date received: Jan 15, 2010 MGT lab reference: **258085**

Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- ✓ All samples were provided chilled.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Contact notes

If you have any questions with respect to these samples please contact:

Andrew Thexton on Phone: (03) 9564 7055 or by e.mail: athexton@mgtenv.com.au

Results will be delivered electronically via e.mail to June Lee - June.Lee@WorleyParsons.com.

mgt Sample Receipt

Site: Landcom / North Tuncurry, NSW

Project: Preliminary Environmental Site Assessment (Soil)

No.	Borehole ID	Sample IDs	Date	TPH/BTEX/P AH	Metals Screen	рН	Herbicides, PAA	Herbicides, Triazine	OCPs, OPPs	Comment
1		BH12/0.1-0.2	12-Jan-10	1	1	1				
2	BH12	BH12/0.4-0.5	12-Jan-10	1	1	1				
3		BH12/0.8-0.9	12-Jan-10	-						_
4		BH15/0.1-0.2	12-Jan-10		1	1	1	1	1	
5	BH15	BH15/0.6-0.7	12-Jan-10		1	1				
6		BH15/0.9-1.0	12-Jan-10							0.000
7		BH16/0.05-0.15	12-Jan-10		1	1				
8	BH16	BH16/0.5-0.6	12-Jan-10		1	1				
9		BH16/0.9-1.0	12-Jan-10		1	1				
10		BH14/0.1-0.2	12-Jan-10		1	1				
11	BH14	BH14/0.4-0.5	12-Jan-10		1	1				
12		BH14/0.8-0.9	12-Jan-10							
13		BH13/0.05-0.15	13-Jan-10		1	1	1	1	1	_
14	BH13	BH13/0.4-0.5	13-Jan-10		1	1				
15		BH13/0.8-0.9	13-Jan-10		1	1				
16		BH11/0.05-0.15	13-Jan-10	-	1	1				-
17	BH11	BH11/0.4-0.5	13-Jan-10		1	1				
18		BH11/0.9-1.0	13-Jan-10			11.61				
19		BH8/0-0.1	13-Jan-10	1	1	1				-
20	BH8	BH8/0.4-0.5	13-Jan-10	12	i	i				
21	Dilo	BH8/0.9-1.0	13-Jan-10							
22		BH7/0.05-0.15	13-Jan-10		1	1				_
23	BH7		13-Jan-10							
	ВП/	BH7/0.5-0.6			1	1				
24		BH7/0.9-1.0	13-Jan-10	-						-
25	DUE	BH5/0.05-0.15	13-Jan-10		1	1	1	1	1	
26	BH5	BH5/0.4-0.5	13-Jan-10		1	1				
27		BH5/0.9-1.0	13-Jan-10		1	1				_
28		BH4/0.05-0.15	13-Jan-10		1	1				
29	BH4	BH4/0.4-0.5	13-Jan-10		1	1				
30		BH4/0.9-1.0	13-Jan-10							_
31		BH2/0.05-0.15	13-Jan-10		1	1	1	1	1	
32	BH2	BH2/0.4-0.5	13-Jan-10		1	1				
33		BH2/0.9-1.0	13-Jan-10	-	1	1				
34		BH1/0.05-0.15	13-Jan-10	1	1	1	1	1	1	_
35	BH1	BH1/0.5-0.6	13-Jan-10		1	1				
36		BH1/0.9-1.0	13-Jan-10		1	1				
37		BH3/0.05-0.15	13-Jan-10		1	1				-
38	BH3	BH3/0.5-0.6	13-Jan-10		1	1				
39		BH3/0.9-1.0	13-Jan-10							
40		BH6/0.05-0.15	13-Jan-10	-	1	1				-
41	BH6	BH6/0.4-0.5	13-Jan-10		1	1				
42		BH6/0.9-1.0	13-Jan-10							
43	2-2	BH10/0.05-0.15	13-Jan-10		1	1	1	1	1	<u> </u>
44	BH10	BH10/0.4-0.5	13-Jan-10		1	i		**		
45	2.710	BH10/0.9-1.0	13-Jan-10		1	i				
46		BH9/0.05-0.15	13-Jan-10	1	1	-				
47	ВН9	BH9/0.4-0.5	13-Jan-10	i	1	i				
48	פוום	BH9/0.9-1.0	13-Jan-10 13-Jan-10	ī	4	18				
				1	1					-
49		Surface 1	13-Jan-10		1					
50	DI: 1	Surface 2	13-Jan-10	1	1					-
51	Blind	Dup 1	12-Jan-10		1					
52	Split	Dup 2	13-Jan-10	Byth Asia st Revers	entro better	976R 207	CONTRACTOR AND	BANKSLEEPINA	OF DECEMBER	MGT to analyse
53	Blind	Dup 3	13-Jan-10	1	1	1	1	1	1	
54	Split	Dup 4	13-Jan-10	WE SHELLOW SERVINGEN	ENGINEER DOORSELF	NOCURE SONG!	ESSENTIAL PROPERTY OF THE PARTY	THE STREET PARTY IN PROPERTY OF	NATIONAL INCOME.	MGT to analyse

Received by: Rhyry Rep: 258085

MorleyParsons | WorleyParsons Address/Office | Venet 12, 333 Cellins St

resources & energy

CHAIN OF CUSTODY Documentation PROJECT Number

Landson site in Nita. Tunumi

PROJECT Title

	L	2						S	
Container				336 426		ess, ten	Project Manager	15 Level 12, 333 Willias St. Melbourne 2000	WorleyParsons Address/Office
Remoral A	Final Report	Cuolation Number 'Laboratory Em	138/60) 180	Contact Number Laboratory Co	June Lee / Trever wall	ried Personnel (Address for Courier)	Laboratory Address	Melbourge 2000 Laboratory	2
	T Empire	Laboratory Email/Contact Number (c3) 8756 800	a contract of the contract of	Laboratory Contact		Courier)		Ewwise Ins	
Fascimile	4	00						5 12.	page 201 2

Date Time Composite Sample	Date Time Date Time Composite Sample Sample Matrix Si. Soil W: Water A: Air St.: Studge GW: Groundwater Preservative Type G: Glass bottle V: Vial P: Plastic bottle	aments EMAL	Courier /	2	8H+10.05-0.15	1	BH2 10.05-0.15	-		1	BN5/0.05-0.15	1		1	BH8/09-10	8118/10-0.10	BH110.9-1.0	Lab ID Client Sample ID
Relinquished by	Volume (mL) HOLD Relinquished by Relinquished by Relinquished by	17/1/10	Date/Time /3/)	\(\frac{1}{\pi}\)		111	1	i)	111			111	1	,		i S S S S S S S S S S S S S S S S S S S	Composite Sample Sample Matrix Soil W: Water A: Air L: Sludge GW: Groundwater reservative J: Soil Jar B: Bag G: Glass bottle V: Viail
	C 2.79/\(\text{\gamma}\)	1000 MET 18/11											\				+	umber

500	STATE OF STREET
8 1	3
н.	100
10.	100
	A COLUMN
10.	-
25.0	A STATE OF THE STA

dress/Office 333 Collins St, Malbeware 3000 Laboratory Address Field Personnel Contact Number Contact Numb		•	at .	page 3 of 3
WorleyParsons Level 12, 333 Cellins St, Malberwale 3000 Laboratory Address for Courier) Project Manager Dan Messiter Contact Number Con		WorleyParsons Address/Office		ELOVOISE / AZS
Project Manager Dan Missifer Contact Number Con	WorleyParsons	Level 12, 333 Collins St,		Laboratory Address /
USTODY Documentation Dan Messiter Contact Number Contact Number Contact Number Contact Number Contact Number Contact Number (の3) 875 に いんび、 ていていていていていていていていていていていていていていていていていていてい		Project Manager		(Address for Courier)
Contact Number Contact Number	CIAN OF CICTORY Documentation	Dan Messiter	dive Lee + Trevir W	ed!
Sample information Collect Number C			Contact Number	
Requested Completion Date Quotation Number Laboratory Email/Contact Number (25) 875 Email Sample Information		336426	04/0325/28/(03)86-	45589
Sample information Standawi Sontainer Sontainer Sontainer Sontainer Sontainer Sontainer Sontainer Sontainer Requested Analytes			Quotation Number	Laboratory Email/Contact Number (05) 8756 8700
Air steer Container Requested Analytes	Landroom site in NTW. Tuncury	Standard		Email
NA CASTAGRA	Sample Information	Container	F	iested Analytes
		Air ater ag Via	_	

Container		Final Report	Email	Fascimile Laboratory Batch Number
ı		equested Analytes		Laboratory Batch Number
Soil W: Water A: Air L: Sludge GW: Groundwater Preservative J Soil Jar B: Bag G: Glass bottle V: Via P: Plastic bottle Jumber Jolume (mL)	HOLD.			Notes
	\			
	\			
	\			
	\			
	\			
	\			
	\			
	\			
	1			
	`			
	\			
H			Data/Time	
Date/Time /3///2010	Relinquised by		Date	
Date/Time '	Relinquished by		Daterille	
Date/Time $I \subset I / I \circ$	2000			
in so log (2) wer oupers ens. com	200000000000000000000000000000000000000	0 . 0000	1	
Sample Matrix	S: Soil W: Water A: / St.: Sludge GW: Groundwa Preservative J: Soil Jar B: Ba G: Glass bottle V: P: Plastic bottle Number Volume (mL)	S. Soil W: Water At St. Studge GW: Groundwa St. St. Studge GW: Groundwa St. St. St. St. St. St. St. St	S. Soil W. Water A. St.: Studge GW: Groundwa St.: Studge GW: Groundwa GW: Groundwa GW: Gr. Glass bottle V. P.: Plastic bottle Number Volume (mL) Relinquished by Relinquished by	W. Water Av. St. Studge GW: Groundwa Studge GW: Groundwa St. Studge GW: Groundwa St. Studge GW: Groundwa St. Studge GW: Gw

10-04736

De Palma, Carmin

From: Truong, Linna

Sent: Thursday, 28 January 2010 12:16 PM

De Palma, Carmin

Subject: WORLEYPARSONS ADDITIONAL - Landcom site in Nth Tuncurry - Rec 15/1/10 REQUEST FOR FURTHER ANALYSES

From: Lee, June (Melbourne) [mallto:June.Lee@WorleyParsons.com] Sent: Thursday, 28 January 2010 12:08 PM

To: Truong, Linna

Cc: Messiter, Dan (East Newcastle)

Subject: RE: Landcom site in Nth Tuncurry - Rec 15/1/10 REQUEST FOR FURTHER ANALYSES

Hi Linna

Can we request the following feachate analyses be carried out on the samples (as listed below) and reported in Ecowise report number 139693.

Lab Sample ID	WorleyParsons Sample ID	Analysis Required
2056242	BH12/0.1-0.2	Acetate leach and DI leach on IRON
2056286	BH10/0.05-0.15	Acetate leach and DI leach on IRON
2056288	8H10/0.9-1.0	Acetate leach and DI leach on IRON
2056293	Surface 2	Acetate leach and Di leach on IRON
2056283	BH6/0.05-0.15	Acetate leach and DI leach on NICKEL

Requested Turnaround: Standard

Please call should you have any questions related to this email.

Thanks for your help!

Kind regards June lee

From: Truong, Linna [mailto:LTruong@ecowise.com.au]
Sent: Thursday, 21 January 2010 2:26 PM
To: Lee, June (Melbourne)
Subject: Ref: Landcom site in Nth Tuncurry - Rec 15/1/10 - Completed report as attached

Linna Truong Client Manager Ecowise Environmental Analytical Services (Now Part of ALS Laboratory Group)
Melbourne, Australia

Phone: +61 3 8756 8000 Direct: +61 3 8756 8112 Fax: +61 3 9763 1862

www.alsglobal.com

This amail and any file transmitted with it are confidential. If the reader of this message is not the intended recipient, please notify the email administrator at chitt@campbell.com.au. It is your

*PLEASE NOTE: This email and any attachments may be confidential. If received in enor, please delete all copies and advise the sender. The reproduction or dissemination of this email or its attachments is prohibited without the consent of the sender.

WARNING RE VIRUSES: Our computer systems sweep outgoing ornal to guard against viruses, but no warranty as given that this ermal or its attachments are virus free Before opening or using allachments, please check for viruses. Our liability is limited to the re-supply of any affected attachments.

Any wews expressed in this message are those of the individual sender, except where the sender expressly, and with authority, states them to be the views of the organisation.

*** WORLEYPARSONS GROUP NOTICE *** "This email is confidential. If you are not the intended recipient, you must not disclose or use the information contained in it. If you have received this email in error, please notify us immediately by return email and delete the email and any attachments. Any personal views or opinions expressed by the writer may not necessarily reflect the views or opinions of any company in the WorleyParsons Group of Companies."

Client: WorleyParsons Ltd

Level 12, 333 Collins Street Address:

MELBOURNE VIC 3000

Certificate of Analysis Batch No: 10-04736

PO No: Not Available

Final Report

Attention: June Lee Report Number: 141632

Page 1 of 4

Ecowise Program Ref: WORLEYPARSONS

Client Program Ref: Landcom Site Nth Tuncurry

& | * | D | & Ecowise

Ecowise Australia Pty Ltd Caribbean Business Park 22 Dalmore Drive Scoresby VIC 3179

Tel: 03 8756 8000 Fax: 03 9763 1862

Date Issued: 02-Feb-2010

Date Sampled: 12-Jan-2010

Date Received: 28-Jan-2010

The sample(s) refe	erred to in this report wer	e analysed by the follo	owing method(s):					
Analysis	Method	Laboratory	Analysis	Method	Laboratory	Analysis	Method	Laboratory
ASLP(Ace) Prep	AS4439.3	Melbourne	ASLP(DI) Prep	AS4439.3	Melbourne	MS ASLP(Acet) Metals	AS4439.3; WSL 032	Melbourne
MS ASLP (D.I) Metals	AS4439.3 WSL 032	Melbourne						

Principal Contact for this Report:

Client Manager

Linna Truong

The results in this report were authorised by: Name Title **Brad Snibson Client Manager** John Earl **Team Leader - Metals** John Levvey **Principal Trace Metals Chemist** Client: WorleyParsons Ltd

Client Program Ref: Landcom Site Nth Tuncurry

Report Number: 141632

Ecowise Program Ref: WORLEYPARSONS

Metals	- ASI P	(Delonised Water)	Analysis:	MS ASLP (D.I) Metals	MS ASLP (D.I) Metals
Sample	Sampled D	`	Component: Units: Sample Type	ASLP-Iron mg/L	ASLP-Nickel mg/L
2068811	12-01-10	BH12/0.1-0.2	SOIL	6.1	
2068812	12-01-10	BH10/0.05-0.15	SOIL	<0.2	
2068813	12-01-10	BH10/0.9-1.0	SOIL	1.2	
2068814	12-01-10	Surface 2	SOIL	19	
2068815	12-01-10	BH6/0.05-0.15	SOIL		<0.01

Motals	- ASI P	(Acetate Buffer)	Analysis:	MS ASLP(Acet) Metals	MS ASLP(Acet) Metals
Sample	Sampled D	,	Component: Units: Sample Type	ASLP-Iron mg/L	ASLP-Nickel mg/L
2068811	12-01-10	BH12/0.1-0.2	SOIL	1.4	
2068812	12-01-10	BH10/0.05-0.15	SOIL	<0.2	
2068813	12-01-10	BH10/0.9-1.0	SOIL	0.9	
2068814	12-01-10	Surface 2	SOIL	0.2	
2068815	12-01-10	BH6/0.05-0.15	SOIL		<0.01

D.I. Water Leachate Preparation	Analysis:	ASLP(DI) Prep	ASLP(DI) Prep
Sample Sampled Date Your Ref	Component: Units: Sample Type	Leach Fluid pH pH units	pH (post rolling) pH units
2068811 12-01-10 BH12/0.1-0.2	SOIL	4.6	5.2
2068812 12-01-10 BH10/0.05-0.15	SOIL	4.6	4.7
2068813 12-01-10 BH10/0.9-1.0	SOIL	4.6	4.1
2068814 12-01-10 Surface 2	SOIL	4.6	6.6
2068815 12-01-10 BH6/0.05-0.15	SOIL	4.6	4.7

Acetat	o l oach	ate Preparation	Analysis:	ASLP(Ace) Prep	ASLP(Ace) Prep
Sample	Sampled D	•	Component: Units: Sample Type	Leach Fluid pH pH units	pH (post rolling) pH units
2068811	12-01-10	BH12/0.1-0.2	SOIL	4.9	4.8
2068812	12-01-10	BH10/0.05-0.15	SOIL	4.9	4.8
2068813	12-01-10	BH10/0.9-1.0	SOIL	4.9	4.8
2068814	12-01-10	Surface 2	SOIL	4.9	4.8
2068815	12-01-10	BH6/0.05-0.15	SOIL	4.9	4.8

Page 3 of 4 Batch No: 10-04736 Client: WorleyParsons Ltd

Report Number: 141632

Client Program Ref: Landcom Site Nth Tuncurry Ecowise Program Ref: WORLEYPARSONS

Ecovise

Environmental Date Issued: 02-Feb-2010

Page 4 of 4 Batch No: 10-04736

Report Number: 141632

Ecowise Program Ref: WORLEYPARSONS

Date Issued: 02-Feb-2010

Quality Control

Client: WorleyParsons Ltd

Client Program Ref: Landcom Site Nth Tuncurry

Metals- ASLP (D	elonised Water)	MS ASLP (D.I) Metals	MS ASLP (D.I) Metals
	oromood trater,	ASLP-Iron	ASLP-Nickel
2072341 BLANK	Value	<0.2	<0.01
2068815 DUPLICATE	Sample Value		<0.01
2068815 DUPLICATE	Duplicate Value		<0.01
2068815 DUPLICATE	% RPD		0
2068815 SPIKE	Sample Value	<0.2	<0.01
2068815 SPIKE	Expected Value	0.43	0.40
2068815 SPIKE	% Recovery	105	102

Metals- ASLP (A	cetate Buffer)	MS ASLP(Acet) Metals	MS ASLP(Acet) Metals
Mictals- AOEI (A	octate Bullety	ASLP-Iron	ASLP-Nickel
2072344 BLANK	Value	<0.2	<0.01
2068815 DUPLICATE	Sample Value	<0.2	<0.01
2068815 DUPLICATE	Duplicate Value	<0.2	<0.01
2068815 DUPLICATE	% RPD	0	0
2068815 SPIKE	Sample Value	<0.2	<0.01
2068815 SPIKE	Expected Value	0.40	0.40
2068815 SPIKE	% Recovery	84.2	92.7

WorleyParsons

resources & energy

CHAIN OF CUSTODY Documentation

PROJECT Number

Contact Number

Dan Messiter

0400336426

Cities in Cardon Site & Nh. Tunun

Standard

Lab ID

BH12/0.1-0.2

PM

Composite Sample

W: Water SL; Sludge GW; Groundwater Preservative

J: Soil Jar B: Bag G: Glass bottle V: Vial P: Plastic bottle

Sample Matrix

Number

Volume (mL)

HOLD.

Client Sample ID

BH12 10-4-0.5

BH12/08-09

١

Ì

1

BH15 16.1-6.2

BH15/0.9-1.0

BH1510-6-0.7

BHIL 10.05-0.15

1

8HH4

10.00.2

BH14/6.8-0.9

١

10-4-0.5

10.05 - 0.1 10.8-0.9 1005-0.15 13/1/10

Ž

)

٧,

Ci

١

BH14/0-4-0.5

8416/05-0.6

BH16/09-1.0

١

WorleyParsons Address/Office Project Manager Lewel 12, 333 Collins St. Melbowne 3000

Laboratory

Ewwise

June Lee + Trever well Laboratory Address (Address for Courier)

Contact Number 0410325128 Laboratory Contact (03)8676 3354

Linna Toward

Laboratory Email/Contact Number (63) 87568000 Fascimile

Final Report

Laboratory Batch Number 10-03110

18411 10 4-0.5 V V - V V	1		
Sampled by June Lee + Traver Wh	June Lee + Travar Williams 12 + 13 Jan 2010 Relin	Relinquised by	Date/Time
Received by Counier 7 1	Date/Time Relin	Relinquished by	Date/Time
Received by Laboratory M.M.	Date/Time 144(11(10 100		
Additional Comments Exact results to	tenail results to june lee @ worldpassons. com		

				lage 2013
W WorleyParsons	WorleyParsons Address/Office	Melbourne 3000 Lat	aboratory EwWise /ALS	- 1
resources & energy	Project Manager Dan Mass Far	15	(Address for Courier)	
USTODY Documentation		June Lee / Hever wall		
ber	Contact Number	Contact Number Contact Number La	Contact Number Laboratory Contact Linna Truong D410325128 /(03)86763354	
PROJECT Title	· 6	Quotation Number La	Laboratory Email/Contact Number (63) 8756 800 o	0000
Landion site in ivin- lunuing	Standowd	Fi I	Final Report Email	Fascimile
usiramininjul sidinise	දිගතසාලා	Kea	ingested white with	Laboratory Batch Number
	A: Air hdwater B: Bag V: Vial			
	3: Glass bottle \ P: Plastic bottle			
Lab ID Client Sample ID Date Time	Samp S: Soll St.: Slu Prese Type Numl			Notes
10.9-1.0 13/110	- s 1ce 0 /			
10-0.10 1"				
`				
1				
1	1			
109-10				
	1			
_				
_				
1	1			
<u>: `</u>				
<u>-</u>	1			
BH2709-1.0				
21.0 - 50.				
Dup 2 V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Sampled by Juve Lee + Trens wall	Date/Time /3/;/2010	Relinquised by	Date/Time	
Received by Counier	Date/Time	Relinquished by	Date/Time	
Received by Laboratory	Date/Time - IIIO IOO			
Additional Comments				
Enoul results to	june.lee (e)	waleyparsons, com		
		•		

Morley Parsons Level 12, 333 Collins 4, Methourne 3000	WorleyParsons Address/Office Level 12, 333 Collins St		Laboratory two Wise / ALS	1825
Aglieus & sazinosar	Project Manager		(Address for Courier)	
AIN OF CUSTODY Documentation	Dan Messiter	June Lee + Traver wall	uli	
UECT Number	Contact Number 23 64 2 6	Contact Number Cortact Number (63) 86-63354	itaci	Linna Towney
JECT Title	Reque	Quotation Number	Laboratory Email/Contact Number	(63) 8756 8000
advenus site in win landaring	Standand		Final Report	Email Fascimile

Accomposal continents Ermant results to June	Pate/Time		re Lee & Trans well Date/Time	pap > 4 4 - 4	7	Suiface 2	1	8/13/0-9-1.0	BH9/0.05-0.15	BH10/0.4-1.0	8410/0.4-0.8	-	6HE 10.4-1.0	BH6/04-0.5	BA3 10.4-1.0	 -	10.9-1.0	10.5-0.6 13/1/10	in i	Sangple Impormation	Land cont site in Nih. Tuncumy Star	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	lber .	USTODY Documentation
-lee @ world	14/1/10	2	13/1/2010	*													777	ice J	Preservative J. Soil Jar B: Bag G: Glass bottle V: Vial P: Plastic bottle Number Volume (mL)	Container	Standard	letion Date	Contact Number 0400 336426	Dan Messiter
Jure-lee @ worleyparsons.com	GO 07	Relinquished by	Relinquised by				\	\ 		\						\			HOLD.	\$\$	77	Quotation Number	Contact Number Contact Number (04) 6325128 / (03) 86-1	June Lee & Trans was
		Da	Da																	outesteo Amenytes	Final Report Email	Laboratory Email/Contact Number (23	Laboratory Contact Linna Theony 63354	r.li
		Date/Time	Date/Time													•		(S) District and an internal a	Nojas	Laboratory Batch Number	Fascimile	(63) 8756 8000	mony	

Site: Landcom / North Tuncurry, NSW Project: Preliminary Environmental Site Assessment (Soli)

No.	Borehole ID	Sample IDS	Date	TPH/BTEX/P AH	Metals Screen	рΗ	Herbicides, PAA	Herbicides, Triazine	OCPs.	
1		BH12/0.1-0.2	12-Jan-10	1	1	1				
2	BH12	BH12/0.4-0.5	12-Jan-10	1	1	1				
. 3		BH12/0.8-0.9	12-Jan-10							
4		BH15/0.1-0.2	12-Jan-10		1	1	1	1	1	-
5	BH15	BH15/0.6-0.7	12-Jan-10		1	1		·	•	
6		BH15/0.9-1.0	12-Jan-10							
7		BH16/0.05-0.15	12-Jan-10		1	1		 -		_
8	BH16	BH16/0.5-0.6	12-Jan-10		i	i				
9		BH16/0.9-1.0	12-Jan-10		i	i				
10		BH14/0.1-0.2	12-Jan-10		1	1				_
11	BH14	BH14/0.4-0.5	12-Jan-10		i	i				
12		BH14/0.8-0.9	12-Jan-10		•	'				
13		BH13/0.05-0.15	13-Jan-10		1	1	1			_
14	BH13	BH13/0.4-0.5	13-Jan-10		i	i	,	1	1	
15		BH13/0.8-0.9	13-Jan-10		1	1				
16		BH11/0.05-0.15	13-Jan-10		1	1				
17	BH11	BH11/0.4-0.5	13-Jan-10							
18	D.1.,,	BH11/0.9-1.0	13-Jan-10		1	1				
19		BH8/0-0,1								
20	вна	BH8/0.4-0.5	13-Jan-10	1	1	1				
21	DITO		13-Jan-10		1	1				
22		BH8/0.9-1.0	13-Jan-10							_
23	BH7	BH7/0.05-0.15	13-Jan-10		1 -	1				
	ВП/	BH7/0.5-0.6	13-Jan-10		1 .	1				
24		BH7/0.9-1.0	13-Jan-10							
25	Bulle	BH5/0.05-0.15	13-Jan-10		1	1	1	1	1	
26	BH5	BH5/0.4-0.5 .	13-Jan-10		1	1				
27		BH5/0.9-1.0	13-Jan-10		1	1				
28		BH4/0.05-0.15	13-Jan-10		1	1				_
29	BH4	BH4/0.4-0.5	13-Jan-10		1	1				
30		BH4/0.9-1,0	13-Jan-10							
31		BH2/0.05-0.15	13-Jan-10		1	1	Ť	1	1	-
32	BH2	BH2/0.4-0.5	13-Jan-10		1	1				
33		BH2/0.9-1.0	13- Ja n-10		1	1				
34		BH1/0.05-0.15	13-Jan-10	1	1	1	1	1	1	
35	BH1	BH1/0.5-0.6	13-Jan-10		1	1	•	•	•	
36		BH1/0.9-1.0	13-Jan-10		1	1				
37		BH3/0.05-0.15	13-Jan-10		1	1				-
38	внз	BH3/0.5-0.6	13-Jan-10		1	i				
39		BH3/0.9-1.0	13-Jan-10		•	•				
40		BH6/0.05-0.15	13-Jan-10		1	1				_
41	BH6	BH6/0.4-0.5	13-Jan-10		i	i				
42		BH6/0.9-1.0	13-Jan-10		•	•				
43		BH10/0.05-0.15	13-Jan-10		1	1	1	1		-
44	BH10	BH10/0.4-0.5	13-Jan-10		1	1	I	1	1	
45		BH10/0.9-1.0	13-Jan-10		1	1				
46		BH9/0.05-0.15	13-Jan-10	1	1	1	_			_
47		BH9/0.4-0.5	13-Jan-10	1	1					
48		BH9/0.9-1.0	13-Jan-10	ı		1				
49		Surface 1	13-Jan-10	1	-					-
50		Surface 2			1					
51			13-Jan-10	1	1					
52		Dup 1	12-Jan-10		1	1				_
		Dup 2	13-Jan-10	4	1	1				MGT to analyse
53 54		Dup 3	13-Jan-10		1	1		1	1	
J 4	Split	Dup 4	13-Jan-10	1	1	1				MGT to analyse

Ecowise Australia Ptv Ltd

Melbourne Laboratory

Caribbean Business Park 22 Dalmore Drive Scoresby VIC 3179

Phone: 03 8756 8000 Fax: 03 9763 1862

Email: melbourne@ecowise.com.au

Web: www.ecowise.com.au

Sample Receipt Advice (SRA)

Client:		Client Contact:	June Lee	
SUNDRY CUSTOMER		Phone : Mobile :	86763943	
		Fax:		
		Email :	june.lee@worleyparsor	ns.com
Batch Summary:	Ecowise Batch No: 10-0)3110		
Date Received :	15-Jan-2010			
Scheduled Reporting Date :	20-Jan-2010			
Client Job Ref : No. of Sample(s) :	WorleyParsons 54			
Program :				
Purchase Order :	Sundry Melbourne n/a			
NATA report :	Reqd.			
_ab. Contact :	Alex Harrison			
Phone:	(03) 8756 8106			
Email:	aharrison@ecowise.com.au			
Consignment /Sample Infor	rmation:			
2225	200			
COC Received : YE	S COC IS O	complete, correct and	unambiguous:	YES
✓ Samples are Chilled	d.			
✓ All samples have be	een received as described in the	ne COC.		
✓ Samples have beer	n received in appropriate conta	iners with correct pre	eservatives.	
✓ All samples were re	eceived in good condition.			
1 7 1	n provided with adequate time	to commence analys	is in	
accordance with the	e relevant holding times.			
Comments:				
Samples Dup 2 and Dup 4 - s	ent to MGT to analyse as regeust	ted.		
	. ,			

Disclaimer: This document contains priviledged and confidential information intended only for the use of the addressee. If you are not the addressee, you are hereby notified that you must not disseminate, copy or take action of its contents. If you have received this document in error, please notify Ecowise

Environmental immediately.

Client: WorleyParsons

Attention: June Lee

Page 1 of 19

Level 12, 333 Collins St Address:

Melbourne VIC 3000

Certificate of Analysis Batch No: 10-03110

Final Report

Report Number: 139693

Ecowise Australia Pty Ltd Caribbean Business Park 22 Dalmore Drive Scoresby VIC 3179

Tel: 03 8756 8000 Fax: 03 9763 1862

Date Issued: 21-Jan-2010

Client Program Ref: WorleyParsons PO No: Not Available Date Sampled: 12-Jan-2010 - 13-Jan-2010

Ecowise Program Ref: SUNDRY_MEL Date Received: 15-Jan-2010

The sample(s) re	eferred to in this report we	ere analysed by the follo	owing method(s):					
Analysis	Method	Laboratory	Analysis	Method	Laboratory	Analysis	Method	Laboratory
HERBICIDES	VIC-CM036	Melbourne	MAH	VIC-CM047	Melbourne	MS Total Metals	WSL 032	Melbourne
OCP	WSL 8080B	Melbourne	OP	VIC-CM044	Melbourne	PAH	WSL 8100B	Melbourne
pH	WSL 062	Melbourne	TPH	VIC-CM030	Melbourne	Triazines	WSL 071	Melbourne

^{*} Landcom site in Nth Tuncurry

Principal Contact for this Report:

Client Manager

The results in this report were authorised by:

Principal Inorganic Chemist

Name Title

Michael Clahsen

Principal Organic Chemist Hao Zhang John Earl **Team Leader - Metals** Kosta Christopoulos Chemist/Analyst

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil A	nalysis		A	nalysis:	pH
Sample	•	ate Your Ref	U	Component: Inits: Cample Type	pH Units
2056242	12-01-10	BH12/0.1-0.2		SOIL	6.2
2056243	12-01-10	BH12/0.4-0.5		SOIL	6.0
2056245	12-01-10	BH15/0.1-0.2		SOIL	4.7
2056246	12-01-10	BH15/0.6-0.7		SOIL	5.2
2056248	12-01-10	BH16/0.05-0.15		SOIL	4.2
2056249	12-01-10	BH16/0.5-0.6		SOIL	5.1
2056250	12-01-10	BH16/0.9-1.0		SOIL	5.5
2056251	12-01-10	BH14/0.1-0.2		SOIL	4.3
2056252	12-01-10	BH14/0.4-0.5		SOIL	4.7
2056254	12-01-10	Dup 1		SOIL	4.4
2056255	13-01-10	BH13/0.05-0.15		SOIL	4.8
2056256	13-01-10	BH13/0.4-0.5		SOIL	4.6
2056257	13-01-10	BH13/0.8-0.9		SOIL	5.0
2056258	13-01-10	BH11/0.05-0.15		SOIL	4.6
2056259	13-01-10	BH11/0.4-0.5		SOIL	5.7
2056261	13-01-10	BH8/0-0.10		SOIL	5.2
2056262	13-01-10	BH8/0.4-0.5		SOIL	4.1
2056264	13-01-10	BH7/0.05-0.15		SOIL	4.8
2056265	13-01-10	BH7/0.5-0.6		SOIL	5.1
2056267	13-01-10	BH5/0.05-0.15		SOIL	4.7
2056268	13-01-10	BH5/0.4-0.5		SOIL	5.1
2056269	13-01-10	BH5/0.9-1.0		SOIL	5.1
2056270	13-01-10	BH4/0.05-0.15		SOIL	4.8
2056271	13-01-10	BH4/0.4-0.5		SOIL	5.2
2056273	13-01-10	BH2/0.05-0.15		SOIL	5.1
2056274	13-01-10	BH2/0.4-0.5		SOIL	4.6
2056275	13-01-10	BH2/0.9-1.0		SOIL	5.1
2056276	13-01-10	BH1/0.05-0.15		SOIL	4.7
2056278	13-01-10	BH1/0.5-0.6		SOIL	4.9
2056279	13-01-10	BH1/0.9-1.0		SOIL	5.1
2056280	13-01-10	BH3/0.05-0.15		SOIL	4.7
2056281	13-01-10	BH3/0.5-0.6		SOIL	4.9
2056283	13-01-10	BH6/0.05-0.15		SOIL	5.1
2056284	13-01-10	BH6/0.4-0.5		SOIL	5.2

Page 3 of 19

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

				рН
				pH Units
2056286	13-01-10	BH10/0.05-0.15	SOIL	5.3
2056287	13-01-10	BH10/0.4-0.5	SOIL	5.2
2056288	13-01-10	BH10/0.9-1.0	SOIL	4.8
2056289	13-01-10	BH9/0.05-0.15	SOIL	5.1
2056290	13-01-10	BH9/0.4-0.5	SOIL	4.9
2056295	13-01-10	Dup 3	SOIL	4.8

Page 4 of 19 Batch No: 10-03110

Client: WorleyParsons

Client Program Ref: WorleyParsons

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil M	lotale	Analysis:	MS Total Metals								
	Sampled Date Your Ref	Component: Units: Sample Type	Al mg/kg	Sb mg/kg	As mg/kg	Ba mg/kg	Be mg/kg	B mg/kg	Cd mg/kg	Cr mg/kg	Co mg/kg
2056242	12-01-10 BH12/0.1-0.2	SOIL	3200	<5	<5	23	<5	10	<0.2	<5	<5
2056243	12-01-10 BH12/0.4-0.5	SOIL	270	<5	<5	<5	<5	<10	<0.2	<5	<5
2056245	12-01-10 BH15/0.1-0.2	SOIL	140	<5	<5	<5	<5	<10	<0.2	<5	<5
2056246	12-01-10 BH15/0.6-0.7	SOIL	83	<5	<5	<5	<5	<10	<0.2	<5	<5
2056248	12-01-10 BH16/0.05-0.15	SOIL	210	<5	<5	5	<5	<10	<0.2	<5	<5
2056249	12-01-10 BH16/0.5-0.6	SOIL	65	<5	<5	<5	<5	<10	<0.2	<5	<5
2056250	12-01-10 BH16/0.9-1.0	SOIL	68	<5	<5	<5	<5	<10	<0.2	<5	<5
2056251	12-01-10 BH14/0.1-0.2	SOIL	210	<5	<5	<5	<5	<10	<0.2	<5	<5
2056252	12-01-10 BH14/0.4-0.5	SOIL	30	<5	<5	<5	<5	<10	<0.2	<5	<5
2056254	12-01-10 Dup 1	SOIL	210	<5	<5	<5	<5	<10	<0.2	<5	<5
2056255	13-01-10 BH13/0.05-0.15	SOIL	110	<5	<5	<5	<5	<10	<0.2	<5	<5
2056256	13-01-10 BH13/0.4-0.5	SOIL	87	<5	<5	<5	<5	<10	<0.2	<5	<5
2056257	13-01-10 BH13/0.8-0.9	SOIL	25	<5	<5	<5	<5	<10	<0.2	<5	<5
2056258	13-01-10 BH11/0.05-0.15	SOIL	120	<5	<5	<5	<5	<10	<0.2	<5	<5
2056259	13-01-10 BH11/0.4-0.5	SOIL	23	<5	<5	<5	<5	<10	<0.2	<5	<5
2056261	13-01-10 BH8/0-0.10	SOIL	50	<5	<5	<5	<5	<10	<0.2	<5	<5
2056262	13-01-10 BH8/0.4-0.5	SOIL	89	<5	<5	6	<5	<10	<0.2	<5	<5
2056264	13-01-10 BH7/0.05-0.15	SOIL	110	<5	<5	<5	<5	<10	<0.2	<5	<5
2056265	13-01-10 BH7/0.5-0.6	SOIL	21	<5	<5	<5	<5	<10	<0.2	<5	<5
2056267	13-01-10 BH5/0.05-0.15	SOIL	110	<5	<5	<5	<5	<10	<0.2	<5	<5
2056268	13-01-10 BH5/0.4-0.5	SOIL	17	<5	<5	<5	<5	<10	<0.2	<5	<5
2056269	13-01-10 BH5/0.9-1.0	SOIL	34	<5	<5	<5	<5	<10	<0.2	<5	<5
2056270	13-01-10 BH4/0.05-0.15	SOIL	62	<5	<5	<5	<5	<10	<0.2	<5	<5
2056271	13-01-10 BH4/0.4-0.5	SOIL	40	<5	<5	<5	<5	<10	<0.2	<5	<5
2056273	13-01-10 BH2/0.05-0.15	SOIL	43	<5	<5	<5	<5	<10	<0.2	<5	<5
2056274	13-01-10 BH2/0.4-0.5	SOIL	95	<5	<5	<5	<5	<10	<0.2	<5	<5
2056275	13-01-10 BH2/0.9-1.0	SOIL	140	<5	<5	<5	<5	<10	<0.2	<5	<5
2056276	13-01-10 BH1/0.05-0.15	SOIL	140	<5	<5	7	<5	<10	<0.2	<5	<5
2056278	13-01-10 BH1/0.5-0.6	SOIL	33	<5	<5	<5	<5	<10	<0.2	<5	<5
2056279	13-01-10 BH1/0.9-1.0	SOIL	45	<5	<5	<5	<5	<10	<0.2	<5	<5
2056280	13-01-10 BH3/0.05-0.15	SOIL	84	<5	<5	<5	<5	<10	<0.2	<5	<5
2056281	13-01-10 BH3/0.5-0.6	SOIL	19	<5	<5	<5	<5	<10	<0.2	<5	<5
2056283	13-01-10 BH6/0.05-0.15	SOIL	170	<5	<5	<5	<5	17	<0.2	<5	<5
	13-01-10 BH6/0.4-0.5	SOIL	24	<5	<5	<5	<5	<10	<0.2	<5	<5

Page 5 of 19 Batch No: 10-03110

Client: WorleyParsons

Client Program Ref: WorleyParsons

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

			MS Total Metals								
			Al mg/kg	Sb mg/kg	As mg/kg	Ba mg/kg	Be mg/kg	B mg/kg	Cd mg/kg	Cr mg/kg	Co mg/kg
2056286 13-01-10	BH10/0.05-0.15	SOIL	200	<5	<5	<5	<5	<10	<0.2	<5	<5
2056287 13-01-10	BH10/0.4-0.5	SOIL	77	<5	<5	<5	<5	<10	<0.2	<5	<5
2056288 13-01-10	BH10/0.9-1.0	SOIL	260	<5	<5	<5	<5	<10	<0.2	<5	<5
2056289 13-01-10	BH9/0.05-0.15	SOIL	180	<5	<5	<5	<5	<10	<0.2	<5	<5
2056290 13-01-10	BH9/0.4-0.5	SOIL	50	<5	<5	<5	<5	<10	<0.2	<5	<5
2056292 13-01-10	Surface 1	TAR	1200	<5	<5	<5	<5	<10	<0.2	<5	<5
2056293 13-01-10	Surface 2	SOIL	9100	<5	<5	84	<5	<10	<0.2	8	<5
2056295 13-01-10	Dup 3	SOIL	130	<5	<5	<5	<5	<10	<0.2	<5	<5

Page 6 of 19 Batch No: 10-03110

Client: WorleyParsons

Client Program Ref: WorleyParsons

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil M	etals	Analysis:	MS Total Metals								
	Sampled Date Your Ref	Component: Units: Sample Type	Cu mg/kg	Fe mg/kg	Pb mg/kg	Mn mg/kg	Hg mg/kg	Mo mg/kg	Ni mg/kg	Se mg/kg	Ag mg/kg
2056242	12-01-10 BH12/0.1-0.2	SOIL	8	6600	28	120	<0.05	<5	<5	<5	<5
2056243	12-01-10 BH12/0.4-0.5	SOIL	<5	340	<5	6	<0.05	<5	<5	<5	<5
2056245	12-01-10 BH15/0.1-0.2	SOIL	<5	100	<5	<5	0.05	<5	<5	<5	<5
2056246	12-01-10 BH15/0.6-0.7	SOIL	<5	310	<5	<5	<0.05	<5	<5	<5	<5
2056248	12-01-10 BH16/0.05-0.15	SOIL	<5	260	<5	<5	<0.05	<5	<5	<5	<5
2056249	12-01-10 BH16/0.5-0.6	SOIL	<5	210	<5	<5	<0.05	<5	<5	<5	<5
2056250	12-01-10 BH16/0.9-1.0	SOIL	<5	250	<5	<5	<0.05	<5	<5	<5	<5
2056251	12-01-10 BH14/0.1-0.2	SOIL	<5	200	<5	<5	<0.05	<5	<5	<5	<5
2056252	12-01-10 BH14/0.4-0.5	SOIL	<5	22	<5	<5	<0.05	<5	<5	<5	<5
2056254	12-01-10 Dup 1	SOIL	<5	260	<5	<5	<0.05	<5	<5	<5	<5
2056255	13-01-10 BH13/0.05-0.15	SOIL	<5	180	<5	<5	<0.05	<5	<5	<5	<5
2056256	13-01-10 BH13/0.4-0.5	SOIL	<5	55	<5	<5	<0.05	<5	<5	<5	<5
2056257	13-01-10 BH13/0.8-0.9	SOIL	<5	25	<5	<5	<0.05	<5	<5	<5	<5
2056258	13-01-10 BH11/0.05-0.15	SOIL	<5	160	<5	<5	<0.05	<5	<5	<5	<5
2056259	13-01-10 BH11/0.4-0.5	SOIL	<5	26	<5	<5	<0.05	<5	<5	<5	<5
2056261	13-01-10 BH8/0-0.10	SOIL	<5	50	<5	<5	<0.05	<5	<5	<5	<5
2056262	13-01-10 BH8/0.4-0.5	SOIL	<5	49	<5	<5	<0.05	<5	<5	<5	<5
2056264	13-01-10 BH7/0.05-0.15	SOIL	<5	110	<5	<5	<0.05	<5	<5	<5	<5
2056265	13-01-10 BH7/0.5-0.6	SOIL	7	11	<5	<5	<0.05	<5	<5	<5	<5
2056267	13-01-10 BH5/0.05-0.15	SOIL	<5	120	<5	<5	<0.05	<5	<5	<5	<5
2056268	13-01-10 BH5/0.4-0.5	SOIL	<5	22	<5	<5	<0.05	<5	<5	<5	<5
2056269	13-01-10 BH5/0.9-1.0	SOIL	<5	32	<5	<5	<0.05	<5	<5	<5	<5
2056270	13-01-10 BH4/0.05-0.15	SOIL	<5	82	<5	<5	<0.05	<5	<5	<5	<5
2056271	13-01-10 BH4/0.4-0.5	SOIL	<5	36	<5	<5	<0.05	<5	<5	<5	<5
2056273	13-01-10 BH2/0.05-0.15	SOIL	<5	89	<5	<5	<0.05	<5	<5	<5	<5
2056274	13-01-10 BH2/0.4-0.5	SOIL	<5	130	<5	<5	<0.05	<5	<5	<5	<5
2056275	13-01-10 BH2/0.9-1.0	SOIL	<5	470	<5	<5	<0.05	<5	<5	<5	<5
2056276	13-01-10 BH1/0.05-0.15	SOIL	<5	150	<5	<5	<0.05	<5	<5	<5	<5
2056278	13-01-10 BH1/0.5-0.6	SOIL	<5	82	<5	<5	<0.05	<5	<5	<5	<5
2056279	13-01-10 BH1/0.9-1.0	SOIL	<5	250	<5	<5	<0.05	<5	<5	<5	<5
2056280	13-01-10 BH3/0.05-0.15	SOIL	<5	110	<5	<5	<0.05	<5	<5	<5	<5
2056281	13-01-10 BH3/0.5-0.6	SOIL	<5	22	<5	<5	<0.05	<5	<5	<5	<5
2056283	13-01-10 BH6/0.05-0.15	SOIL	9	520	47	6	<0.05	<5	950	<5	<5
	13-01-10 BH6/0.4-0.5	SOIL	<5	37	<5	<5	<0.05	<5	<5	<5	<5

Page 7 of 19 Batch No: 10-03110

Client: WorleyParsons

Client Program Ref: WorleyParsons

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

		MS Total Metals								
		Cu mg/kg	Fe mg/kg	Pb mg/kg	Mn mg/kg	Hg mg/kg	Mo mg/kg	Ni mg/kg	Se mg/kg	Ag mg/kg
2056286 13-01-10 BH10/0.05-0.15	SOIL	<5	170	<5	<5	<0.05	<5	<5	<5	<5
2056287 13-01-10 BH10/0.4-0.5	SOIL	<5	210	<5	<5	<0.05	<5	<5	<5	<5
2056288 13-01-10 BH10/0.9-1.0	SOIL	8	1000	<5	<5	<0.05	<5	<5	<5	<5
2056289 13-01-10 BH9/0.05-0.15	SOIL	<5	250	<5	<5	<0.05	<5	<5	<5	<5
2056290 13-01-10 BH9/0.4-0.5	SOIL	<5	56	<5	<5	<0.05	<5	<5	<5	<5
2056292 13-01-10 Surface 1	TAR	<5	2500	<5	60	<0.05	<5	<5	<5	<5
2056293 13-01-10 Surface 2	SOIL	11	31000	10	150	<0.05	<5	<5	<5	<5
2056295 13-01-10 Dup 3	SOIL	<5	140	<5	<5	<0.05	<5	<5	<5	<5

Page 8 of 19

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil M	etals		Analysis:	MS Total Metals					
		te Your Ref	Component: Units: Sample Type	Sr mg/kg	TI mg/kg	Sn mg/kg	Ti mg/kg	V mg/kg	Zn mg/kg
2056242	12-01-10	BH12/0.1-0.2	SOIL	6	<5	<5	84	13	17
2056243	12-01-10	BH12/0.4-0.5	SOIL	<5	<5	<5	17	<5	<5
2056245	12-01-10	BH15/0.1-0.2	SOIL	<5	<5	<5	<5	<5	<5
2056246	12-01-10	BH15/0.6-0.7	SOIL	<5	<5	<5	6	<5	<5
2056248	12-01-10	BH16/0.05-0.15	SOIL	6	<5	<5	<5	<5	<5
2056249	12-01-10	BH16/0.5-0.6	SOIL	<5	<5	<5	7	<5	<5
2056250	12-01-10	BH16/0.9-1.0	SOIL	<5	<5	<5	7	<5	<5
2056251	12-01-10	BH14/0.1-0.2	SOIL	<5	<5	<5	<5	<5	<5
2056252	12-01-10	BH14/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5
2056254	12-01-10	Dup 1	SOIL	<5	<5	<5	6	<5	<5
2056255	13-01-10	BH13/0.05-0.15	SOIL	<5	<5	<5	<5	<5	<5
2056256	13-01-10	BH13/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5
2056257	13-01-10	BH13/0.8-0.9	SOIL	<5	<5	<5	<5	<5	<5
2056258	13-01-10	BH11/0.05-0.15	SOIL	<5	<5	<5	6	<5	<5
2056259	13-01-10	BH11/0.4-0.5	SOIL	<5	<5	<5	8	<5	<5
2056261	13-01-10	BH8/0-0.10	SOIL	<5	<5	<5	<5	<5	<5
2056262	13-01-10	BH8/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5
2056264	13-01-10	BH7/0.05-0.15	SOIL	<5	<5	<5	<5	<5	<5
2056265	13-01-10	BH7/0.5-0.6	SOIL	<5	<5	<5	<5	<5	<5
2056267	13-01-10	BH5/0.05-0.15	SOIL	<5	<5	<5	<5	<5	<5
2056268	13-01-10	BH5/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5
2056269	13-01-10	BH5/0.9-1.0	SOIL	<5	<5	<5	5	<5	<5
2056270	13-01-10	BH4/0.05-0.15	SOIL	<5	<5	<5	<5	<5	<5
2056271	13-01-10	BH4/0.4-0.5	SOIL	<5	<5	<5	6	<5	<5
2056273	13-01-10	BH2/0.05-0.15	SOIL	<5	<5	<5	<5	<5	<5
2056274	13-01-10	BH2/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5
2056275	13-01-10	BH2/0.9-1.0	SOIL	<5	<5	<5	9	<5	<5
2056276	13-01-10	BH1/0.05-0.15	SOIL	8	<5	<5	<5	<5	<5
2056278	13-01-10	BH1/0.5-0.6	SOIL	<5	<5	<5	<5	<5	<5
2056279	13-01-10	BH1/0.9-1.0	SOIL	<5	<5	<5	5	<5	<5
2056280	13-01-10	BH3/0.05-0.15	SOIL	<5	<5	<5	8	<5	<5
2056281	13-01-10	BH3/0.5-0.6	SOIL	<5	<5	<5	7	<5	<5
2056283	13-01-10	BH6/0.05-0.15	SOIL	<5	<5	10	<5	<5	15
2056284	13-01-10	BH6/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5

Page 9 of 19

Client: WorleyParsons

Report Number: 139693

Batch No: 10-03110

Client Program Ref: WorleyParsons Ecowise Program Ref: SUNDRY_MEL

			MS Total Metals					
			Sr mg/kg	TI mg/kg	Sn mg/kg	Ti mg/kg	V mg/kg	Zn mg/kg
2056286 13-0	01-10 BH10/0.05-0.15	SOIL	<5	<5	<5	<5	<5	<5
2056287 13-0	01-10 BH10/0.4-0.5	SOIL	<5	<5	<5	<5	<5	<5
2056288 13-0	01-10 BH10/0.9-1.0	SOIL	<5	<5	<5	15	<5	<5
2056289 13-0	01-10 BH9/0.05-0.15	SOIL	<5	<5	<5	8	<5	<5
2056290 13-0	01-10 BH9/0.4-0.5	SOIL	<5	<5	<5	6	<5	<5
2056292 13-0	11-10 Surface 1	TAR	30	<5	<5	18	<5	7
2056293 13-0	11-10 Surface 2	SOIL	6	<5	<5	44	44	34
2056295 13-0	01-10 Dup 3	SOIL	6	<5	<5	<5	<5	6

Soil MA	ЛШ	Analysis:	MAH	MAH	MAH	MAH	MAH	MAH	MAH
	Sampled Date Your Ref	Component: Units: Sample Type	BENZ mg/kg	TOLUENE mg/kg	ETHBENZ mg/kg	XYLENE mg/kg	STYRENE mg/kg	CUMENE mg/kg	124TMBEN mg/kg
2056242	12-01-10 BH12/0.1-0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056243	12-01-10 BH12/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056261	13-01-10 BH8/0-0.10	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056276	13-01-10 BH1/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056289	13-01-10 BH9/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056290	13-01-10 BH9/0.4-0.5	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056292	13-01-10 Surface 1	TAR	<0.5	2.6	1.6	18	<0.5	0.8	10
2056293	13-01-10 Surface 2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295	13-01-10 Dup 3	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Page 10 of 19

Client: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Client Program Ref: WorleyParsons Ecowise Program Ref: SUNDRY_MEL

Soil TP	ы		Analysis:	TPH	TPH	TPH	TPH
	Sampled Da	nte Your Ref	Component: Units: Sample Type	TPHC6+ mg/kg	TPHC10+ mg/kg	TPHC15+ mg/kg	TPHC29+ mg/kg
2056242	12-01-10	BH12/0.1-0.2	SOIL	<20	<20	<50	<50
2056243	12-01-10	BH12/0.4-0.5	SOIL	<20	<20	<50	<50
2056261	13-01-10	BH8/0-0.10	SOIL	<20	<20	<50	<50
2056276	13-01-10	BH1/0.05-0.15	SOIL	<20	<20	<50	<50
2056289	13-01-10	BH9/0.05-0.15	SOIL	<20	<20	<50	<50
2056290	13-01-10	BH9/0.4-0.5	SOIL	<20	<20	<50	<50
2056292	13-01-10	Surface 1	TAR	<100	1600	<300	2200
2056293	13-01-10	Surface 2	SOIL	<20	41	73	220
2056295	13-01-10	Dup 3	SOIL	<20	<20	<50	<50

Soil PAH	Analysis:	PAH								
	Component:	ACE	ACY	ANT	BAA	BAP	BBF	BGP	BKF	CHR
Sample Sampled Date Your Ref	Units:	mg/kg								
	Sample Type									
2056242 12-01-10 BH12/0.1-0.2	SOIL	<0.1	0.1	<0.1	0.2	0.2	0.6	0.7	0.6	0.3
2056243 12-01-10 BH12/0.4-0.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056261 13-01-10 BH8/0-0.10	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056276 13-01-10 BH1/0.05-0.15	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056289 13-01-10 BH9/0.05-0.15	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056290 13-01-10 BH9/0.4-0.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056292 13-01-10 Surface 1	TAR	<3	<3	<3	<3	<3	<3	<3	<3	<3
2056293 13-01-10 Surface 2	SOIL	<0.3	0.6	0.7	2.8	3.3	7.9	9.9	7.9	4.4
2056295 13-01-10 Dup 3	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Page 11 of 19

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil PAH	Analysis:	PAH							
	Component:	DBA	FLA	FLU	IPY	NAP	PHE	PYR	TOTPAHs
Sample Sampled Date Your Ref	Units:	mg/kg							
	Sample Type								
2056242 12-01-10 BH12/0.1-0.2	SOIL	0.2	0.3	<0.1	0.6	<0.1	0.1	0.3	4.2
2056243 12-01-10 BH12/0.4-0.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056261 13-01-10 BH8/0-0.10	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056276 13-01-10 BH1/0.05-0.15	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056289 13-01-10 BH9/0.05-0.15	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056290 13-01-10 BH9/0.4-0.5	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056292 13-01-10 Surface 1	TAR	<3	<3	<3	<3	41	<3	<3	41
2056293 13-01-10 Surface 2	SOIL	2.3	4.1	<0.3	8.6	0.4	1.6	3.7	58
2056295 13-01-10 Dup 3	SOIL	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil O.C. Pesticides	Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Sample Sampled Date Your Ref	Component: Units: Sample Type	ABHC mg/kg	AENDOSUL mg/kg	ALDR mg/kg	BBHC mg/kg	BENDOSUL mg/kg	cis-Chlordane mg/kg	trans-Chlordane mg/kg	DBHC mg/kg	DDD mg/kg
2056245 12-01-10 BH15/0.1-0.2	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056255 13-01-10 BH13/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056267 13-01-10 BH5/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056273 13-01-10 BH2/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056276 13-01-10 BH1/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056286 13-01-10 BH10/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056295 13-01-10 Dup 3	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

	Analysis:	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Soil O.C. Pesticides										
	Component:	DDE	DDT	DIEL	ENDOS	ENDR	ENDRALD	ENDRKET	HCB	HEPEP
Sample Sampled Date Your Ref	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Sample Type									
2056245 12-01-10 BH15/0.1-0.2	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056255 13-01-10 BH13/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056267 13-01-10 BH5/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056273 13-01-10 BH2/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056276 13-01-10 BH1/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056286 13-01-10 BH10/0.05-0.15	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056295 13-01-10 Dup 3	SOIL	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil O.C. Pes	ticides	Analysis:	OCP	OCP	OCP
		Component:	HEPT	LIND	METHOX
Sample Sampled	Date Your Ref	Units:	mg/kg	mg/kg	mg/kg
		Sample Type			
2056245 12-01-10	BH15/0.1-0.2	SOIL	<0.05	<0.05	<0.05
2056255 13-01-10	BH13/0.05-0.15	SOIL	<0.05	<0.05	<0.05
2056267 13-01-10	BH5/0.05-0.15	SOIL	<0.05	<0.05	<0.05
2056273 13-01-10	BH2/0.05-0.15	SOIL	<0.05	<0.05	<0.05
2056276 13-01-10	BH1/0.05-0.15	SOIL	<0.05	<0.05	<0.05
2056286 13-01-10	BH10/0.05-0.15	SOIL	<0.05	<0.05	<0.05
2056295 13-01-10	Dup 3	SOIL	<0.05	<0.05	<0.05

Soil O.P. Pesticides	Analysis:	OP	OP	OP	OP	OP	OP	OP	OP	OP
Sample Sampled Date Your Ref	Component: Units: Sample Type	CHLORFOS mg/kg	DIAZINON mg/kg	DICHLVOS mg/kg	ETHION mg/kg	FENTHIO mg/kg	MALTHION mg/kg	MEVPHOS mg/kg	PARATH mg/kg	RONNEL mg/kg
2056245 12-01-10 BH15/0.1-0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056255 13-01-10 BH13/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056267 13-01-10 BH5/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056273 13-01-10 BH2/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056276 13-01-10 BH1/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056286 13-01-10 BH10/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295 13-01-10 Dup 3	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil O	.P. Pesti	cides	Analysis:	OP
Sample	Sampled D	ate Your Ref	Component: Units: Sample Type	STIROFOS mg/kg
2056245	12-01-10	BH15/0.1-0.2	SOIL	<0.5
2056255	13-01-10	BH13/0.05-0.15	SOIL	<0.5
2056267	13-01-10	BH5/0.05-0.15	SOIL	<0.5
2056273	13-01-10	BH2/0.05-0.15	SOIL	<0.5
2056276	13-01-10	BH1/0.05-0.15	SOIL	<0.5
2056286	13-01-10	BH10/0.05-0.15	SOIL	<0.5
2056295	13-01-10	Dup 3	SOIL	<0.5

Page 13 of 19 Batch No: 10-03110

Client: WorleyParsons

WorleyParsons

Client Program Ref:

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Soil He	Soil Herbicides		Analysis:	HERBICIDES	HERBICIDES	HERBICIDES
Sample Sampled Date Y			Component: Units: Sample Type	2,4-D mg/kg	2,4,5-T mg/kg	MCPA mg/kg
2056245	12-01-10	BH15/0.1-0.2	SOIL	<0.5	<0.5	<0.5
2056255	13-01-10	BH13/0.05-0.15	SOIL	<0.5	<0.5	<0.5
2056267	13-01-10	BH5/0.05-0.15	SOIL	<0.5	<0.5	<0.5
2056273	13-01-10	BH2/0.05-0.15	SOIL	<0.5	<0.5	<0.5
2056276	13-01-10	BH1/0.05-0.15	SOIL	<0.5	<0.5	<0.5
2056286	13-01-10	BH10/0.05-0.15	SOIL	<0.5	<0.5	<0.5
2056295	13-01-10	Dup 3	SOIL	<0.5	<0.5	<0.5

Soil Triazines	Analysis:	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines
Sample Sampled Date Your Ref	Component: Units:	AMETRYN mg/kg	ATRAZINE mg/kg	PROMETON mg/kg	PROMETRY mg/kg	PROPAZIN mg/kg	SIMAZINE mg/kg	TBAZINE mg/kg	SIMETRYN mg/kg	TERBUTRYN mg/kg
	Sample Type									
2056245 12-01-10 BH15/0.1-0.2	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056255 13-01-10 BH13/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056267 13-01-10 BH5/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056273 13-01-10 BH2/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056276 13-01-10 BH1/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056286 13-01-10 BH10/0.05-0.15	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295 13-01-10 Dup 3	SOIL	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Page 14 of 19

Client: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Date Issued: 21-Jan-2010

Quality Control

Client Program Ref: WorleyParsons

Soil Herbicides	HERBICIDES	HERBICIDES	HERBICIDES
Our Herbicides	2,4-D	2,4,5-T	MCPA
2056295 DUPLICATE Sample Value	<0.5	<0.5	<0.5
2056295 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5
2056295 DUPLICATE % RPD	0	0	0
2056295 SPIKE Sample Value	<0.5	<0.5	<0.5
2056295 SPIKE Expected Value	2.1	2.1	2.1
2056295 SPIKE % Recovery	70.4	63.4	65.2
2061381 BLANK Value	<0.5	<0.5	<0.5

Soil MAH	MAH	MAH	MAH	MAH	MAH	MAH	MAH
OUI MAI	BENZ	TOLUENE	ETHBENZ	XYLENE	STYRENE	CUMENE	124TMBEN
2056243 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056243 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056243 DUPLICATE % RPD	0	0	0	0	0	0	0
2056276 SPIKE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056276 SPIKE Expected Value	3.7	3.7	3.7	11	3.7	3.7	3.7
2056276 SPIKE % Recovery	85.3	88.1	82.7	89.4	101	99.1	88.8
2057671 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil O.C. Pesticides	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
30 313. 1 33333	ABHC	AENDOSUL	ALDR	BBHC	BENDOSUL	cis-Chlordane	trans-Chlordane	DBHC	DDD
2056730 DUPLICATE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056730 DUPLICATE Duplicate Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056730 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2056730 SPIKE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056730 SPIKE Expected Value	2.6	1.3	1.3	2.2	1.3	1.3	1.3	2.6	1.3
2056730 SPIKE % Recovery	107	98.0	104	111	90.0	98.0	108	104	98.0
2059694 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Soil O.C. Pesticides	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
Con C.C. I Concided	DDE	DDT	DIEL	ENDOS	ENDR	ENDRALD	ENDRKET	HCB	HEPEP
2056730 DUPLICATE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056730 DUPLICATE Duplicate Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056730 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2056730 SPIKE Sample Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2056730 SPIKE Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3	2.3	1.3

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP	OCP
	DDE	DDT	DIEL	ENDOS	ENDR	ENDRALD	ENDRKET	HCB	HEPEP
2056730 SPIKE % Recovery	90.0	74.0	90.0	76.0	90.0	76.0	90.0	113	108
2059694 BLANK Value	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Soil O.C. Pesticides	OCP	OCP	OCP
Con C.C. I Conolaco	HEPT	LIND	METHOX
2056730 DUPLICATE Sample Value	<0.05	<0.05	<0.05
2056730 DUPLICATE Duplicate Value	<0.05	<0.05	<0.05
2056730 DUPLICATE % RPD	0	0	0
2056730 SPIKE Sample Value	<0.05	<0.05	<0.05
2056730 SPIKE Expected Value	1.3	2.6	1.3
2056730 SPIKE % Recovery	98.0	109	72.0
2059694 BLANK Value	<0.05	<0.05	<0.05

Soil O.P. Pesticides	OP	OP	OP	OP	OP	OP	OP	OP	OP
	CHLORFOS	DIAZINON	DICHLVOS	ETHION	FENTHIO	MALTHION	MEVPHOS	PARATH	RONNEL
2056295 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2056295 SPIKE Sample Value	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5		<0.5
2056295 SPIKE Expected Value	1.3	1.3		1.3	1.3	1.3	1.3		1.3
2056295 SPIKE % Recovery	94.0	90.0		74.0	94.0	86.0	76.0		96.0
2060074 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Soil O.P. Pesticides	OP
	STIROFOS
2056295 DUPLICATE Sample Value	<0.5
2056295 DUPLICATE Duplicate Value	<0.5
2056295 DUPLICATE % RPD	0
2056295 SPIKE Sample Value	<0.5
2056295 SPIKE Expected Value	1.3
2056295 SPIKE % Recovery	76.0
2060074 BLANK Value	<0.5

Soil PAH		PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
		ACE	ACY	ANT	BAA	BAP	BBF	BGP	BKF	CHR
2056295 SPIKE	Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1
2056295 SPIKE	Expected Value	1.3	1.3	1.3	1.3	1.3	1.3		1.3	1.3

Client Program Ref:

Client: WorleyParsons

WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

	PAH								
	ACE	ACY	ANT	BAA	BAP	BBF	BGP	BKF	CHR
2056295 SPIKE % Recovery	108	98.0	98.0	92.0	70.0	72.0		84.0	80.0
2056730 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056730 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056730 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2059702 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2058113 DUPLICATE Sample Value	<0.3	0.5	0.7	3.2	4.4	3.6	4.0	3.6	3.2
2058113 DUPLICATE Duplicate Value	<0.3	0.5	0.7	3.2	4.4	3.5	3.9	3.5	3.2
2058113 DUPLICATE % RPD	0	0.0	0.0	0.0	0.0	3.8	3.4	3.8	0.0
2061470 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
OUIT AIT	DBA	FLA	FLU	IPY	NAP	PHE	PYR	TOTPAHs
2056295 SPIKE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2056295 SPIKE Expected Value	1.3	1.3	1.3	1.3	1.3	1.3	1.3	
2056295 SPIKE % Recovery	74.0	94.0	108	74.0	100	100	96.0	
2056730 DUPLICATE Sample Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056730 DUPLICATE Duplicate Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2056730 DUPLICATE % RPD	0	0	0	0	0	0	0	0
2059702 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2058113 DUPLICATE Sample Value	1.2	5.5	<0.3	3.1	<0.3	1.7	5.9	41
2058113 DUPLICATE Duplicate Value	1.2	5.5	<0.3	3.1	<0.3	1.7	5.8	40
2058113 DUPLICATE % RPD	0.0	0.0	0	0.0	0	0.0	2.3	1.0
2061470 BLANK Value	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil Analysis	рН
Con 7 manyone	pН
2057509 BLANK Value	5.6
2056283 DUPLICATE Sample Value	5.1
2056283 DUPLICATE Duplicate Value	5.3
2056283 DUPLICATE % RPD	3.7

Soil Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals	MS Total Metals
Con motals	Al	Sb	As	Ва	Be	В	Cd	Cr	Co
2057663 BLANK Value	<5	<5	<5	<5	<5	<10	<0.2	<5	<5
2055682 DUPLICATE Sample Value			<5				<0.2		
2055682 DUPLICATE Duplicate Value			<5				<0.2		
2055682 DUPLICATE % RPD			0				0		

Page 17 of 19

Client: WorleyParsons Report Number: 139693

Client Program Ref: WorleyParsons

Ecowise Program Ref: SUNDRY_MEL

		MS Total Metals								
		Al	Sb	As	Ва	Be	В	Cd	Cr	Co
2056243 SPIKE	Sample Value			<5	<5	<5	<10	<0.2	<5	<5
2056243 SPIKE	Expected Value			100	100	100	100	100	100	100
2056243 SPIKE	% Recovery			110	113	116	114	110	108	109
2059945 BLANK	Value	<5	<5	<5	<5	<5	<10	<0.2	<5	<5
2056256 SPIKE	Sample Value		<5	<5	<5	<5	<10	<0.2	<5	<5
2056256 SPIKE	Expected Value		100	100	100	100	100	100	100	100
2056256 SPIKE	% Recovery		107	90.1	94.2	93.8	94.0	92.8	92.7	95.9
2056281 DUPLICATE	Sample Value	19	<5	<5		<5	<10	<0.2	<5	<5
2056281 DUPLICATE	Duplicate Value	19	<5	<5		<5	<10	<0.2	<5	<5
2056281 DUPLICATE	% RPD	0.7	0	0		0	0	0	0	0
2059956 BLANK	Value	<5	<5	<5	<5	<5	<10	<0.2	<5	<5
2056295 SPIKE	Sample Value		<5	<5	<5	<5	<10	<0.2	<5	<5
2056295 SPIKE	Expected Value		100	100	100	100	100	100	100	100
2056295 SPIKE	% Recovery		102	87.6	92.3	94.4	101	90.1	94.8	95.6
2056925 DUPLICATE	-	10000	<5	<5	25	<5	<10	<0.2	24	11
2056925 DUPLICATE	Duplicate Value	11000	<5	<5	29	<5	<10	<0.2	24	13
2056925 DUPLICATE	% RPD	11.5	0	0	13.1	0	0	0	2.8	15.6

Soil Metals		MS Total Metals								
3011 Wetais		Cu	Fe	Pb	Mn	Hg	Мо	Ni	Se	Ag
2057663 BLANK	Value	<5	<10	<5	<5	<0.05	<5	<5	<5	<5
2055682 DUPLICATE	Sample Value	22		9		<0.05	<5	110	<5	<5
2055682 DUPLICATE	Duplicate Value	22		10		<0.05	<5	110	<5	<5
2055682 DUPLICATE	% RPD	1.8		3.8		0	0	0.8	0	0
2056243 SPIKE	Sample Value	<5		<5	6	<0.05	<5		<5	
2056243 SPIKE	Expected Value	100		100	100	1.0	100		100	
2056243 SPIKE	% Recovery	107		111	107	101	117		107	
2059945 BLANK	Value	<5	<10	<5	<5	<0.05	<5	<5	<5	<5
2056256 SPIKE	Sample Value	<5	55	<5	<5	<0.05	<5	<5	<5	
2056256 SPIKE	Expected Value	100	150	100	100	1.0	100	100	100	
2056256 SPIKE	% Recovery	95.1	99.3	98.8	93.6	87.0	94.6	91.6	87.5	
2056281 DUPLICATE	Sample Value	<5	22	<5			<5	<5	<5	<5
2056281 DUPLICATE	Duplicate Value	<5	27	<5			<5	<5	<5	<5
2056281 DUPLICATE	% RPD	0	19.5	0			0	0	0	0
2059956 BLANK	Value	<5	<10	<5	<5	<0.05	<5	<5	<5	<5
2056295 SPIKE	Sample Value	<5		<5	<5	<0.05	<5	<5	<5	
2056295 SPIKE	Expected Value	100		100	100	1.0	100	100	100	

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

	MS Total Metals								
	Cu	Fe	Pb	Mn	Hg	Мо	Ni	Se	Ag
2056295 SPIKE % Recovery	92.3		96.6	94.3	86.9	91.2	92.5	83.7	
2056925 DUPLICATE Sample Value	7	15000	17	330	<0.05	<5	8	<5	
2056925 DUPLICATE Duplicate Value	8	16000	14	410	<0.05	<5	9	<5	
2056925 DUPLICATE % RPD	12.4	7.8	22.2	20.7	0	0	11.0	0	

Soil Metals		MS Total Metals					
Son Metais		Sr	TI	Sn	Ti	V	Zn
2057663 BLANK	Value	<5	<5	<5	<5	<5	<5
2055682 DUPLICATE	Sample Value			<5			40
2055682 DUPLICATE	Duplicate Value			<5			39
2055682 DUPLICATE	% RPD			0			3.4
2056243 SPIKE	Sample Value	<5	<5	<5	17	<5	<5
2056243 SPIKE	Expected Value	100	100	100	110	100	100
2056243 SPIKE	% Recovery	111	104	118	105	110	102
2059945 BLANK	Value	<5	<5	<5	<5	<5	<5
2056256 SPIKE	Sample Value	<5	<5	<5	<5	<5	<5
2056256 SPIKE	Expected Value	100	100	100	100	100	100
2056256 SPIKE	% Recovery	95.5	101	97.4	91.4	96.5	87.4
2056281 DUPLICATE	Sample Value	<5	<5	<5	7		
2056281 DUPLICATE	Duplicate Value	<5	<5	<5	8		
2056281 DUPLICATE	% RPD	0	0	0	14.4		
2059956 BLANK	Value	<5	<5	<5	<5	<5	<5
2056295 SPIKE	Sample Value	6	<5	<5	<5	<5	6
2056295 SPIKE	Expected Value	110	100	100	100	100	110
2056295 SPIKE	% Recovery	93.7	93.1	93.4	91.6	95.7	84.0
2056925 DUPLICATE	Sample Value	10	<5	<5	36	45	13
2056925 DUPLICATE	Duplicate Value	11	<5	<5	42	46	11
2056925 DUPLICATE	% RPD	5.8	0	0	16.1	1.4	12.3

Soil TPH	TPH	TPH	TPH	TPH
3011 TT	TPHC6+	TPHC10+	TPHC15+	TPHC29+
2056730 DUPLICATE Sample Value	<20	<20	<50	<50
2056730 DUPLICATE Duplicate Value	<20	<20	<50	<50
2056730 DUPLICATE % RPD	0	0	0	0
2056730 SPIKE Sample Value			<50	
2056730 SPIKE Expected Value			310	
2056730 SPIKE % Recovery			89.5	

Page 19 of 19

Client: WorleyParsons

Client Program Ref: WorleyParsons

Batch No: 10-03110

Report Number: 139693

Ecowise Program Ref: SUNDRY_MEL

Ecovise

Environmental

		TPH	TPH	TPH	TPH
		TPHC6+	TPHC10+	TPHC15+	TPHC29+
2060192 BLANK	Value	<20	<20	<50	<50
2056781 SPIKE	Sample Value			<50	
2056781 SPIKE	Expected Value			470	
2056781 SPIKE	% Recovery			94.3	
2056295 DUPLICATE	Sample Value	<20	<20	<50	<50
2056295 DUPLICATE	Duplicate Value	<20	<20	<50	<50
2056295 DUPLICATE	% RPD	0	0	0	0
2060347 BLANK	Value	<20	<20	<50	<50

Soil Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines	Triazines
30.1.1.d2.1.133	AMETRYN	ATRAZINE	PROMETON	PROMETRY	PROPAZIN	SIMAZINE	TBAZINE	SIMETRYN	TERBUTRYN
2056295 DUPLICATE Sample Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295 DUPLICATE Duplicate Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2056295 DUPLICATE % RPD	0	0	0	0	0	0	0	0	0
2060076 BLANK Value	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

CERTIFICATE OF ANALYSIS

Worley Parsons Melbourne Level 12, 333 Collins Stree Melbourne **VIC 3000**

Site: PRELIMINARY ENVIRONMENTAL SITE

ASSESSMENT

Report Number: 258085-V1 Page 1 of 8

Order Number:

Date Received: Jan 15, 2010 Date Sampled: Jan 13, 2010 Date Reported: Jan 22, 2010

Contact: June Lee

Methods

- USEPA 8270C Polycyclic Aromatic Hydrocarbons
 USEPA 8260B MGT 350A Monocyclic Aromatic **Hydrocarbons**
- TRH C6-C36 MGT 100A
- USEPA 6020 Heavy Metals & USEPA 7470/71 Mercury
 Method 102 ANZECC % Moisture
- · APHA 4500 pH by Direct Measurement

Comments

Notes

Authorised Report Number: 258085-V1

Michael Wright Senior Principal Chemist NATA Signatory

Rhonda Chouman Client Manager NATA Signatory

Orlando Scalzo Chief Organic Chemist NATA Signatory Andrew Cook **Chief Inorganic Chemist**

11 11

Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mat@matenv.com.au

web: www.matenv.com.au

GLOSSARY OF TERMS

UNITS

mg/kg milligrams per Kilogram milligrams per litre mg/l micrograms per litre Parts per million ug/l ppm ppb Parts per billion Percentage Organisms per 100 millilitres org/100ml NTII Units

TERMS

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

Limit of Reporting. LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody

Sample Receipt Advice SRA

QC - ACCEPTANCE CRITERIA RPD Duplicates Results

Results <10 times the LOR: No Limit

Results between 10-20 times LOR: RPD must lie between 0-50%

Results >20 times LOR: RPD must lie between 0-20% **LCS** Recoveries Recoveries must lie between 70-130% - Phenols 30-130% **CRM Recoveries** Recoveries must lie between 70-130% - Phenols 30-130%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 30-130% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-130%

GENERAL COMMENTS

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis

QC DATA GENERAL COMMENTS

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons - where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6 Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 7
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.

 For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample. 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 258085-V1 Page 2 of 8

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation NATA Accretitation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

ABN - 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Company Name: Address:

Worley Parsons Melbourne Level 12, 333 Collins Stree Melbourne VIC 3000

Order No.: Report #: Phone: 258085 8676 3500 8676 3505 Fax:

Jan 15, 2010 12:00 Jan 22, 2010 09:02 Received:

Due: Priority: Contact name: 5 Day June Lee

PRELIMINARY ENVIRONMENTAL SITE Client Job No.:

ASSESSMENT

mgt Client Manager: Andrew Thexton

	Sá	ample Detail			% Moisture	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Molybdenum	Nickel	pH (1:5 Aqueous extract)	Selenium	Silver	Tin	Zinc	Monocyclic Aromatic Hydrocarbons	Polycyclic Aromatic Hydrocarbons	Total Recoverable Hydrocarbons
Laboratory who	ere analysis is co	nducted																			
Melbourne Lab	oratory - NATA S	ite #1254			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Labora	tory - NATA Site	#18217																			
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
DUP 2	Jan 13, 2010		Soil	M10-JA03597	Х	х	Х	Х	х	Х	Х	х	х	Х	х	Х	Х	Х			
DUP 4	Jan 13, 2010		Soil	M10-JA03598	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Worley Parsons Melbourne	Client Sample ID		DUP 2	DUP 4
Level 12, 333 Collins Stree	Lab Number		M10-JA03597	M10-JA03598
Melbourne	Matrix		Soil	Soil
VIC 3000	Sample Date		Jan 13, 2010	Jan 13, 2010
Analysis Type	LOR	Units		,
Total Recoverable Hydrocarbons				
TRH C6-C9 Fraction by GC	20	mg/kg	-	< 20
TRH C10-C14 Fraction by GC	50	mg/kg	-	< 50
TRH C15-C28 Fraction by GC	100	mg/kg	-	< 100
TRH C29-C36 Fraction by GC	100	mg/kg	-	< 100
Monocyclic Aromatic Hydrocarbons				
Benzene	0.05	mg/kg	-	< 0.05
Toluene	0.05	mg/kg	-	< 0.05
Ethylbenzene	0.05	mg/kg	-	< 0.05
Xylenes(ortho.meta and para)	0.05	mg/kg	-	< 0.05
Fluorobenzene (surr.)	1	%	-	83
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.1	mg/kg	-	< 0.1
Acenaphthylene	0.1	mg/kg	-	< 0.1
Anthracene	0.1	mg/kg	-	< 0.1
Benz(a)anthracene	0.1	mg/kg	-	< 0.1
Benzo(a)pyrene	0.1	mg/kg	-	< 0.1
Benzo(b)fluoranthene	0.1	mg/kg	-	< 0.1
Benzo(g.h.i)perylene	0.1	mg/kg	-	< 0.1
Benzo(k)fluoranthene	0.1	mg/kg	-	< 0.1
Chrysene	0.1	mg/kg	-	< 0.1
Dibenz(a.h)anthracene	0.1	mg/kg	-	< 0.1
Fluoranthene	0.1	mg/kg	-	< 0.1
Fluorene	0.1	mg/kg	-	< 0.1
ndeno(1.2.3-cd)pyrene	0.1	mg/kg	-	< 0.1
Naphthalene	0.1	mg/kg	-	< 0.1
Phenanthrene	0.1	mg/kg	-	< 0.1
Pyrene	0.1	mg/kg	-	< 0.1
Total PAH	0.1	mg/kg	-	< 0.1
p-Terphenyl-d14 (surr.)	1	%	-	108
2-Fluorobiphenyl (surr.)	1	%	_	99

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Worley Parsons Melbourne	Client Sample ID		DUP 2	DUP 4	
Level 12, 333 Collins Stree	Lab Number		M10-JA03597	M10-JA03598	
Melbourne	Matrix		Soil	Soil	
VIC 3000	Sample Date		Jan 13, 2010	Jan 13, 2010	
Analysis Type	LOR	Units	,	1, 2, 2	
· · ·					
% Moisture	0.1	%	16	4.1	
pH (1:5 Aqueous extract)	0.1	units	4.4	5.1	
Heavy Metals					
Arsenic	2.0	mg/kg	< 2	< 2	
Cadmium	0.5	mg/kg	< 0.5	< 0.5	
Chromium	5	mg/kg	< 5	< 5	
Copper	5	mg/kg	< 5	< 5	
ead	5	mg/kg	< 5	< 5	
Mercury	0.1	mg/kg	< 0.1	< 0.1	
Molybdenum	10	mg/kg	< 10	< 10	
Nickel	5	mg/kg	< 5	< 5	
Selenium	2	mg/kg	< 2	< 2	
Silver	5	mg/kg	< 5	< 5	
Γin	10	mg/kg	< 10	< 10	
Zinc	5	mg/kg	< 5	< 5	

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Worley Parsons Melbourne	Client Sample ID	DUP 2	DUP 2	RPD	SPIKE	LCS	Method blank
Level 12, 333 Collins Stree	Lab Number	10-JA03597	10-JA03597	10-JA03597	10-JA03597	Batch	Batch
Melbourne	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	% Recovery	
VIC 3000	Matrix	Soil	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010
Analysis Type	Units			% RPD	% Recovery	% Recovery	mg/L
pH (1:5 Aqueous extract)		4.4	4.4	-	-	-	-
Heavy Metals		Batch	Batch	Batch	Batch		
Arsenic		< 2	< 2	< 1	93	96	< 2
Cadmium		< 0.5	< 0.5	< 1	97	109	< 0.5
Chromium		< 5	< 5	< 1	77	109	< 5
Copper		8.3	27	100	102	106	< 5
Lead		14	14	5.0	110	104	< 5
Molybdenum		< 10	< 10	< 1	76	102	< 10
Nickel		< 5	7.6	62	93	102	< 5
Selenium		< 2	< 2	< 1	91	102	< 2
Silver		< 5	< 5	< 1	118	114	< 5
Tin		< 10	< 10	< 1	97	103	< 10
Zinc		27	31	11	91	100	< 5

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

ABN – 50 005 085 521 e.mail: mgt@mgtenv.com.au web: www.mgtenv.com.au

Worley Parsons Melbourne	Client Sample	DUP 4	DUP 4	RPD	SPIKE	LCS	Method blank
Level 12, 333 Collins Stree	Lab Number	10-JA03598	10-JA03598	10-JA03598	10-JA03598	Batch	Batch
Melbourne	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	% Recovery	
VIC 3000	Matrix	Soil	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010
Analysis Type	Units			% RPD	% Recovery	% Recovery	mg/L
pH (1:5 Aqueous extract)		5.1	5.1	-	-	-	-
Total Recoverable Hydrocarbons		Batch	Batch	Batch	Batch		
TRH C6-C9 Fraction by GC		< 20	< 20	< 1	77	92	< 20
TRH C10-C14 Fraction by GC		< 50	< 50	< 1	101	105	< 50
TRH C15-C28 Fraction by GC		< 100	< 100	< 1	=	-	< 100
TRH C29-C36 Fraction by GC		< 100	< 100	< 1	=	-	< 100
Monocyclic Aromatic Hydrocarbons		Batch	Batch	Batch	Batch		
Benzene		< 0.05	< 0.05	< 1	80	98	< 0.05
Toluene		< 0.05	< 0.05	< 1	81	97	< 0.05
Ethylbenzene		< 0.05	< 0.05	< 1	83	99	< 0.05
Xylenes(ortho.meta and para)		< 0.05	< 0.05	< 1	77	84	< 0.05
Polycyclic Aromatic Hydrocarbons		Batch	Batch	Batch	Batch		
Acenaphthene		< 0.1	< 0.1	< 1	105	105	< 0.1
Acenaphthylene		< 0.1	< 0.1	< 1	111	106	< 0.1
Anthracene		< 0.1	< 0.1	< 1	108	104	< 0.1
Benz(a)anthracene		< 0.2	< 0.2	< 1	115	102	< 0.1
Benzo(a)pyrene		< 0.1	< 0.1	< 1	110	99	< 0.1
Benzo(b)fluoranthene		< 0.1	< 0.1	< 1	115	109	< 0.1
Benzo(g.h.i)perylene		< 0.1	< 0.1	< 1	114	99	< 0.1
Benzo(k)fluoranthene		< 0.1	< 0.1	< 1	111	101	< 0.1
Chrysene		< 0.2	< 0.2	< 1	114	107	< 0.1
Dibenz(a.h)anthracene		< 0.1	< 0.1	< 1	125	86	< 0.1
Fluoranthene		< 0.2	< 0.2	< 1	111	100	< 0.1
Fluorene		< 0.1	< 0.1	< 1	109	105	< 0.1
Indeno(1.2.3-cd)pyrene		< 0.1	< 0.1	< 1	123	93	< 0.1
Naphthalene		< 0.1	< 0.1	< 1	85	111	< 0.1
Phenanthrene		< 0.1	< 0.1	< 1	108	105	< 0.1
Pyrene		< 0.2	< 0.2	< 1	110	100	< 0.1
Heavy Metals		Batch	Batch	Batch	Batch		

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Worley Parsons Melbourne	Client Sample	DUP 4	DUP 4	RPD	SPIKE	Method blank
Level 12, 333 Collins Stree	Lab Number	10-JA03598	10-JA03598	10-JA03598	10-JA03598	Batch
Melbourne	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	
VIC 3000	Matrix	Soil	Soil	Soil	Soil	Soil
	Sample Date	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010	Jan 13, 2010
Analysis Type	Units			% RPD	% Recovery	mg/L
Heavy Metals		Batch	Batch	Batch	Batch	
Mercury		< 0.1	< 0.1	< 1	76	< 0.1
					1	

EcoNomics

resources & energy

LANDCOM
NORTH TUNCURRY (NSW) RESIDENTIAL LAND DEVELOPMENT
SOIL CONTAMINATION INVESTIGATION

Appendix 4 Site Photographs (13 and 14 January 2010)

Page 1 301020-02358 : 00-EN-REP-0001Rev A : 28 April 2010

Photograph 1

Looking to the east of the site. Typical view of dense vegetation observed across the site.

Photograph 2

Looking west towards BH15. Access to borehole location BH15 had to be undertaken by foot due to dense vegetation and narrow pathway for vehicle access.

Photograph 3

Looking north towards BH9. Electricity easement parallel to The Lakes Way adjacent to the western boundary of the site.

Photograph 4

Looking east towards existing (stand pipe – locked) piezometer located adjacent to the west of borehole location BH14.

Photograph 5

Looking east towards 'crushed rock' area located adjacent to the start of the golf course access road. Note vehicle maintenance work undertaken by Council workers within the area.

Photograph 6

Surface condition of where vehicle maintenance work was carried out at the 'crushed rock' area located adjacent to the beginning of the golf course access road.